--- library_name: peft license: llama3.2 base_model: NousResearch/Llama-3.2-1B tags: - axolotl - generated_from_trainer model-index: - name: 63bd93dc-ce75-4513-ac10-cade1bba594e results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Llama-3.2-1B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 72c617f12cee054e_train_data.json ds_type: json field: question path: /workspace/input_data/72c617f12cee054e_train_data.json type: completion debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: ardaspear/63bd93dc-ce75-4513-ac10-cade1bba594e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: true lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 72GB max_steps: 50 micro_batch_size: 8 mlflow_experiment_name: /tmp/72c617f12cee054e_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: false sample_packing: false saves_per_epoch: 4 sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: leixa-personal wandb_mode: online wandb_name: 63bd93dc-ce75-4513-ac10-cade1bba594e wandb_project: Gradients-On-Two wandb_run: your_name wandb_runid: 63bd93dc-ce75-4513-ac10-cade1bba594e warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 63bd93dc-ce75-4513-ac10-cade1bba594e This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 36 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0851 | 1 | 3.5373 | | 3.9013 | 0.2553 | 3 | 3.4989 | | 3.5773 | 0.5106 | 6 | 3.2268 | | 3.432 | 0.7660 | 9 | 3.0620 | | 3.4585 | 1.0213 | 12 | 2.9458 | | 2.8128 | 1.2766 | 15 | 2.8751 | | 2.6305 | 1.5319 | 18 | 2.8008 | | 2.6033 | 1.7872 | 21 | 2.7672 | | 2.8825 | 2.0426 | 24 | 2.7446 | | 2.2496 | 2.2979 | 27 | 2.7331 | | 2.4327 | 2.5532 | 30 | 2.7290 | | 2.3787 | 2.8085 | 33 | 2.7301 | | 2.3388 | 3.0638 | 36 | 2.7303 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1