--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama_v1.1 tags: - axolotl - generated_from_trainer model-index: - name: e06cc970-900f-4c24-8ad4-1b16cc96e0db results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama_v1.1 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9ea43b1347cf8a61_train_data.json ds_type: json format: custom path: /workspace/input_data/9ea43b1347cf8a61_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: ardaspear/e06cc970-900f-4c24-8ad4-1b16cc96e0db hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: true lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 72GB max_steps: 100 micro_batch_size: 4 mlflow_experiment_name: /tmp/9ea43b1347cf8a61_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: false sample_packing: false saves_per_epoch: 4 sequence_len: 1024 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: leixa-personal wandb_mode: online wandb_name: e06cc970-900f-4c24-8ad4-1b16cc96e0db wandb_project: Gradients-On-Two wandb_run: your_name wandb_runid: e06cc970-900f-4c24-8ad4-1b16cc96e0db warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# e06cc970-900f-4c24-8ad4-1b16cc96e0db This model is a fine-tuned version of [TinyLlama/TinyLlama_v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9730 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 1.4287 | | 1.2206 | 0.0059 | 9 | 1.2039 | | 1.1016 | 0.0118 | 18 | 1.0844 | | 1.0125 | 0.0176 | 27 | 1.0380 | | 0.9891 | 0.0235 | 36 | 1.0137 | | 0.997 | 0.0294 | 45 | 0.9985 | | 0.974 | 0.0353 | 54 | 0.9874 | | 1.0105 | 0.0412 | 63 | 0.9818 | | 0.9499 | 0.0470 | 72 | 0.9770 | | 0.9495 | 0.0529 | 81 | 0.9744 | | 0.9092 | 0.0588 | 90 | 0.9733 | | 0.9768 | 0.0647 | 99 | 0.9730 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1