Update model and dataset references
Browse files
README.md
CHANGED
@@ -9,6 +9,8 @@ tags:
|
|
9 |
- dpo
|
10 |
- rlaif
|
11 |
- rlhf
|
|
|
|
|
12 |
---
|
13 |
# ⚗️ distilabeled Marcoro14 7B Slerp
|
14 |
|
@@ -20,6 +22,32 @@ tags:
|
|
20 |
</p>
|
21 |
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
## Benchmark results
|
25 |
For benchmarking we used the famous "Nous" or "Teknium" benchmark. You can find below an overview, including our first experiment with a less ambitious dataset filtering (removing ties and `score>5`).
|
@@ -32,3 +60,14 @@ For running the benchmark we used another awesome contribution from Maxime: [LLM
|
|
32 |
|[Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) | 44.66| 76.24| 64.15| 45.64| 57.67|
|
33 |
|[argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B) | 44.64 | 73.35 | 55.96 | 42.21 | 54.04 |
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
- dpo
|
10 |
- rlaif
|
11 |
- rlhf
|
12 |
+
- merge
|
13 |
+
- mergekit
|
14 |
---
|
15 |
# ⚗️ distilabeled Marcoro14 7B Slerp
|
16 |
|
|
|
22 |
</p>
|
23 |
|
24 |
|
25 |
+
## Introduction
|
26 |
+
|
27 |
+
This model is a new DPO fine-tune of our new open dataset [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs), on the [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) model. You can find more information of the "distilabeled" dataset used at this repo [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction), and visit [distilabel](https://github.com/argilla-io/distilabel).
|
28 |
+
|
29 |
+
## Training details
|
30 |
+
|
31 |
+
As we did with [Notus](https://argilla.io/blog/notus7b/), we wanted a reproducible recipe to test the impact of data quality.
|
32 |
+
|
33 |
+
And we're lucky to have so many amazing folks in the open community contributing reproducible, easy-to-use training scripts and recipes. This time, [Maxime Labonne](https://twitter.com/maximelabonne) had shared a [Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) to fine-tune OpenHermes with DPO and the original Intel's dataset, perfect! We just updated the base model to [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp), and applied the same dataset recipe we used for [argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B/blob/main/README.md#introduction):
|
34 |
+
|
35 |
+
```python
|
36 |
+
from datasets import load_dataset
|
37 |
+
|
38 |
+
# Instead of this:
|
39 |
+
# dataset = load_dataset("Intel/orca_dpo_pairs", split="train")
|
40 |
+
|
41 |
+
# we did this
|
42 |
+
dataset = load_dataset("argilla/distilabel-intel-orca-dpo-pairs", split="train")
|
43 |
+
|
44 |
+
dataset = dataset.filter(
|
45 |
+
lambda r:
|
46 |
+
r["status"] != "tie" and
|
47 |
+
r["chosen_score"] >= 8 and
|
48 |
+
not r["in_gsm8k_train"]
|
49 |
+
)
|
50 |
+
```
|
51 |
|
52 |
## Benchmark results
|
53 |
For benchmarking we used the famous "Nous" or "Teknium" benchmark. You can find below an overview, including our first experiment with a less ambitious dataset filtering (removing ties and `score>5`).
|
|
|
60 |
|[Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) | 44.66| 76.24| 64.15| 45.64| 57.67|
|
61 |
|[argilla/distilabeled-Hermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-Hermes-2.5-Mistral-7B) | 44.64 | 73.35 | 55.96 | 42.21 | 54.04 |
|
62 |
|
63 |
+
### Training Hardware
|
64 |
+
|
65 |
+
We used 1 x A100 80GB in runpod for less than 1 hour.
|
66 |
+
|
67 |
+
## Acknowledgements
|
68 |
+
|
69 |
+
We'd like to thank the amazing open community and in particular:
|
70 |
+
|
71 |
+
* The Intel team for publishing a great open dataset and show how well it worked in the first place
|
72 |
+
* Teknium and NousResearch for their awesome work and models.
|
73 |
+
* Maxime for sharing such great resources.
|