|
--- |
|
tags: |
|
- ultralyticsplus |
|
- yolov5 |
|
- ultralytics |
|
- yolo |
|
- vision |
|
- object-detection |
|
- pytorch |
|
- indonesia |
|
- aksara |
|
- aksarajawa |
|
|
|
model-index: |
|
- name: ariffaizin19/yolov5-sewaka-detc |
|
results: |
|
- task: |
|
type: object-detection |
|
|
|
metrics: |
|
- type: precision |
|
value: 0.995 |
|
name: mAP@0.5(box) |
|
inference: false |
|
--- |
|
# YOLOv5 for Aksara Jawa |
|
|
|
<div align="center"> |
|
<img width="640" alt="ariffaizin19/aksarajawa" src="https://huggingface.co/ariffaizin19/yolov5-sewaka-detc/resolve/main/thumbnail.jpg"> |
|
</div> |
|
|
|
## Supported Labels |
|
```python |
|
[ |
|
'1 Ha', '2 Na', '3 Ca', '4 Ra', '5 Ka', '6 Da', '7 Ta', '8 Sa', '9 Wa', '10 La', |
|
'11 Pa', '12 Dha', '13 Ja', '14 Ya', '15 Nya', '16 Ma', '17 Ga', '18 Ba', '19 Tha', '20 Nga', |
|
'21 Pasangan Ha', '22 Pasangan Na', '23 Pasangan Ca', '24 Pasangan Ra', '25 Pasangan Ka', |
|
'26 Pasangan Da', '27 Pasangan Ta', '28 Pasangan Sa', '29 Pasangan Wa', '30 Pasangan La', |
|
'31 Pasangan Pa', '32 Pasangan Dha', '33 Pasangan Ja', '34 Pasangan Ya', '35 Pasangan Nya', |
|
'36 Pasangan Ma', '37 Pasangan Ga', '38 Pasangan Ba', '39 Pasangan Tha', '40 Pasangan Nga', |
|
'41 Wulu', '42 Pepet', '43 Suku', '44 Taling', '45 Taling Tarung', |
|
'46 Cecak', '47 Layar', '48 Pangkon', '49 Pengkol', '50 Wignyan', |
|
'51 Cakra', '52 Pa Cerek', '53 Nga Lelet', '54 Pada Lingsa', '55 Pada Madya', '56 Purwa Pada', |
|
'57 Murda Na', '58 Murda Ka', '59 Murda Ta', '60 Murda Sa', '61 Murda Pa', '63 Murda Ga', '64 Murda Ba', |
|
'67 Pasangan Murda Ga', '71 Pasangan Murda Ta', |
|
'73 Rekan Kha', '76 Rekan Za', |
|
'81 Pasangan Murda Za', |
|
'83 Swara A', '84 Swara E', '85 Swara U', '86 Swara I', |
|
'95 Mahaprana Sha', '97 Cakra Keret' |
|
] |
|
``` |
|
|
|
## How to use |
|
- Install library |
|
|
|
`pip install yolov5==7.0.5 torch` |
|
|
|
## Load model and perform prediction |
|
```python |
|
import yolov5 |
|
from PIL import Image |
|
model = yolov5.load(models_id) |
|
model.overrides['conf'] = 0.25 # NMS confidence threshold |
|
model.overrides['iou'] = 0.45 # NMS IoU threshold |
|
model.overrides['max_det'] = 1000 # maximum number of detections per image |
|
# set image |
|
image = 'https://huggingface.co/spaces/ariffaizin19/yolov5-sewaka-detc/raw/main/test_images/example1.jpg' |
|
# perform inference |
|
results = model.predict(image) |
|
# observe results |
|
print(results[0].boxes) |
|
render = render_result(model=model, image=image, result=results[0]) |
|
render.show() |
|
``` |