--- language: - ml license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Arjun Shaji results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ml split: None args: 'config: ml, split: test' metrics: - name: Wer type: wer value: 85.28735632183908 --- # Whisper Small Hi - Arjun Shaji This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6067 - Wer: 85.2874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.1903 | 3.7037 | 100 | 1.1262 | 100.0 | | 0.473 | 7.4074 | 200 | 0.5343 | 100.9195 | | 0.1263 | 11.1111 | 300 | 0.4247 | 91.7241 | | 0.0335 | 14.8148 | 400 | 0.5135 | 91.7241 | | 0.0262 | 18.5185 | 500 | 0.5317 | 91.7241 | | 0.0135 | 22.2222 | 600 | 0.5361 | 86.2069 | | 0.0067 | 25.9259 | 700 | 0.5448 | 84.5977 | | 0.0016 | 29.6296 | 800 | 0.6192 | 88.0460 | | 0.0003 | 33.3333 | 900 | 0.5992 | 84.8276 | | 0.0002 | 37.0370 | 1000 | 0.6067 | 85.2874 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.1.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1