File size: 4,475 Bytes
38a822f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: mit
base_model: arthurmluz/ptt5-xlsumm-30epochs
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: ptt5-xlsumm-temario
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ptt5-xlsumm-temario

This model is a fine-tuned version of [arthurmluz/ptt5-xlsumm-30epochs](https://huggingface.co/arthurmluz/ptt5-xlsumm-30epochs) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4610
- Rouge1: 0.0891
- Rouge2: 0.0571
- Rougel: 0.0781
- Rougelsum: 0.0845
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 88   | 2.7016          | 0.0862 | 0.0326 | 0.0681 | 0.0805    | 19.0    |
| No log        | 2.0   | 176  | 2.6413          | 0.0879 | 0.0389 | 0.0701 | 0.0828    | 19.0    |
| 2.9296        | 3.0   | 264  | 2.5893          | 0.0881 | 0.0438 | 0.0707 | 0.0827    | 19.0    |
| 2.9296        | 4.0   | 352  | 2.5650          | 0.0923 | 0.0479 | 0.0748 | 0.0871    | 19.0    |
| 2.646         | 5.0   | 440  | 2.5429          | 0.0885 | 0.0469 | 0.0732 | 0.0834    | 19.0    |
| 2.646         | 6.0   | 528  | 2.5247          | 0.088  | 0.0503 | 0.0739 | 0.0831    | 19.0    |
| 2.5072        | 7.0   | 616  | 2.5108          | 0.0891 | 0.0534 | 0.0769 | 0.0851    | 19.0    |
| 2.5072        | 8.0   | 704  | 2.5039          | 0.0884 | 0.0547 | 0.0764 | 0.0848    | 19.0    |
| 2.5072        | 9.0   | 792  | 2.4948          | 0.0864 | 0.0536 | 0.0751 | 0.083     | 19.0    |
| 2.4128        | 10.0  | 880  | 2.4836          | 0.0869 | 0.0546 | 0.076  | 0.0839    | 19.0    |
| 2.4128        | 11.0  | 968  | 2.4813          | 0.0866 | 0.0543 | 0.0764 | 0.0832    | 19.0    |
| 2.356         | 12.0  | 1056 | 2.4768          | 0.0864 | 0.0533 | 0.076  | 0.0828    | 19.0    |
| 2.356         | 13.0  | 1144 | 2.4728          | 0.0872 | 0.0556 | 0.0775 | 0.0838    | 19.0    |
| 2.2815        | 14.0  | 1232 | 2.4666          | 0.0877 | 0.0557 | 0.0774 | 0.0841    | 19.0    |
| 2.2815        | 15.0  | 1320 | 2.4667          | 0.0866 | 0.0552 | 0.0764 | 0.0829    | 19.0    |
| 2.2106        | 16.0  | 1408 | 2.4680          | 0.0869 | 0.0553 | 0.0772 | 0.0824    | 19.0    |
| 2.2106        | 17.0  | 1496 | 2.4647          | 0.0867 | 0.0553 | 0.0771 | 0.0828    | 19.0    |
| 2.2106        | 18.0  | 1584 | 2.4597          | 0.0875 | 0.0561 | 0.0777 | 0.0837    | 19.0    |
| 2.1809        | 19.0  | 1672 | 2.4601          | 0.0873 | 0.0557 | 0.0773 | 0.0833    | 19.0    |
| 2.1809        | 20.0  | 1760 | 2.4596          | 0.0873 | 0.0561 | 0.0773 | 0.0835    | 19.0    |
| 2.1541        | 21.0  | 1848 | 2.4592          | 0.0875 | 0.0561 | 0.0777 | 0.0837    | 19.0    |
| 2.1541        | 22.0  | 1936 | 2.4620          | 0.0869 | 0.0551 | 0.0768 | 0.0828    | 19.0    |
| 2.1442        | 23.0  | 2024 | 2.4621          | 0.0869 | 0.0551 | 0.0768 | 0.0828    | 19.0    |
| 2.1442        | 24.0  | 2112 | 2.4619          | 0.0868 | 0.0553 | 0.0768 | 0.0828    | 19.0    |
| 2.1071        | 25.0  | 2200 | 2.4613          | 0.0868 | 0.0553 | 0.0768 | 0.0828    | 19.0    |
| 2.1071        | 26.0  | 2288 | 2.4618          | 0.0873 | 0.0557 | 0.0768 | 0.0828    | 19.0    |
| 2.1071        | 27.0  | 2376 | 2.4607          | 0.0892 | 0.0575 | 0.0782 | 0.0847    | 19.0    |
| 2.08          | 28.0  | 2464 | 2.4606          | 0.0874 | 0.056  | 0.0769 | 0.083     | 19.0    |
| 2.08          | 29.0  | 2552 | 2.4616          | 0.0891 | 0.0571 | 0.0781 | 0.0845    | 19.0    |
| 2.1013        | 30.0  | 2640 | 2.4610          | 0.0891 | 0.0571 | 0.0781 | 0.0845    | 19.0    |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1