artificialguybr commited on
Commit
7e98935
1 Parent(s): 80791da

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +143 -0
README.md ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: NousResearch/Meta-Llama-3-8B
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: llama3-8b-redmond-code290k
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
14
+ <details><summary>See axolotl config</summary>
15
+
16
+ axolotl version: `0.4.0`
17
+ ```yaml
18
+ base_model: NousResearch/Meta-Llama-3-8B
19
+ model_type: LlamaForCausalLM
20
+ tokenizer_type: AutoTokenizer
21
+
22
+ load_in_8bit: false
23
+ load_in_4bit: false
24
+ strict: false
25
+
26
+ datasets:
27
+ - path: b-mc2/sql-create-context
28
+ type: context_qa.load_v2
29
+ dataset_prepared_path: last_run_prepared
30
+ val_set_size: 0.05
31
+ output_dir: ./artificialguybr/llama3-8b-redmond-code290k
32
+
33
+ sequence_len: 8192
34
+ sample_packing: true
35
+ pad_to_sequence_len: true
36
+
37
+ wandb_project: artificialguybr/llama3-8b-redmond-code290k
38
+ wandb_entity:
39
+ wandb_watch:
40
+ wandb_name:
41
+ wandb_log_model:
42
+
43
+ gradient_accumulation_steps: 8
44
+ micro_batch_size: 1
45
+ num_epochs: 3
46
+ optimizer: paged_adamw_8bit
47
+ lr_scheduler: cosine
48
+ learning_rate: 2e-5
49
+
50
+ train_on_inputs: false
51
+ group_by_length: false
52
+ bf16: auto
53
+ fp16:
54
+ tf32: false
55
+
56
+ gradient_checkpointing: true
57
+ gradient_checkpointing_kwargs:
58
+ use_reentrant: false
59
+ early_stopping_patience:
60
+ resume_from_checkpoint:
61
+ logging_steps: 1
62
+ xformers_attention:
63
+ flash_attention: true
64
+
65
+ warmup_steps: 100
66
+ evals_per_epoch: 2
67
+ eval_table_size:
68
+ saves_per_epoch: 1
69
+ debug:
70
+ deepspeed:
71
+ weight_decay: 0.0
72
+ fsdp:
73
+ fsdp_config:
74
+ special_tokens:
75
+ pad_token: <|end_of_text|>
76
+
77
+ ```
78
+
79
+ </details><br>
80
+
81
+ # LLAMA 3 8B Redmond CODE 290K
82
+
83
+ Thanks to [Redmond.ai](https://redmond.ai) for the GPU Support!
84
+
85
+ This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) on the [ajibawa-2023/Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT) dataset.
86
+
87
+ ## Model description
88
+
89
+ The Code-290k-ShareGPT model is a large language model designed to generate code and explanations in various programming languages, including Python, Java, JavaScript, GO, C++, Rust, Ruby, SQL, MySQL, R, Julia, Haskell, and more. It takes as input a prompt or question and outputs a corresponding code snippet with a detailed explanation.
90
+
91
+ The model is trained on a massive dataset of approximately 290,000 conversations, each consisting of two conversations. This dataset is in the Vicuna/ShareGPT format, which allows for efficient training and fine-tuning of the model.
92
+
93
+ The model is intended to be used in applications where code generation and explanation are necessary, such as coding assistance, education, and knowledge sharing.
94
+
95
+ ## Intended uses & limitations
96
+ Intended uses:
97
+
98
+ Generating code and explanations in various programming languages
99
+
100
+ Assisting in coding tasks and education
101
+
102
+ Providing knowledge sharing and documentation
103
+
104
+ Integrating with other language models or tools to provide a more comprehensive coding experience
105
+
106
+ Limitations:
107
+
108
+ The model may not perform well on very rare or niche programming languages
109
+
110
+ The model may not generalize well to unseen coding styles or conventions
111
+
112
+ The model may not be able to handle extremely complex code or edge cases
113
+
114
+ The model may not be able to provide explanations for highly abstract or theoretical concepts
115
+
116
+ The model may not be able to handle ambiguous or open-ended prompts## Training procedure
117
+
118
+ ### Training hyperparameters
119
+
120
+ The following hyperparameters were used during training:
121
+ - learning_rate: 2e-05
122
+ - train_batch_size: 1
123
+ - eval_batch_size: 1
124
+ - seed: 42
125
+ - gradient_accumulation_steps: 8
126
+ - total_train_batch_size: 8
127
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
128
+ - lr_scheduler_type: cosine
129
+ - lr_scheduler_warmup_steps: 100
130
+ - num_epochs: 2
131
+
132
+ ### Training results
133
+
134
+ Soon
135
+
136
+ ### Framework versions
137
+
138
+ - Transformers 4.40.0.dev0
139
+ - Pytorch 2.2.2+cu121
140
+ - Datasets 2.15.0
141
+ - Tokenizers 0.15.0
142
+
143
+