--- license: apache-2.0 --- To re-create and use the chatbot for inference, follow these steps: 1. Download the model artifacts from the Hugging Face Model Hub by following the instructions in the article. 2. Clone the [GitHub repository](https://github.com/arunprsh/multi-turn-chatbot-gpt-sagemaker) for the multi-turn chatbot with GPT-Neo and Sagemaker. 3. Navigate to the `03-evaluate` directory to access the notebook with the code for inference. ![Alt Text](https://github.com/arunprsh/multi-turn-chatbot-gpt-sagemaker/blob/main/img/mtc1.png?raw=true) For a comprehensive, step-by-step guide on how to replicate the creation of a multi-turn chatbot using GPT-Neo, please refer to the Medium article [here](https://medium.com/@shankar.arunp/building-a-multi-turn-chatbot-with-gpt-and-sagemaker-a-step-by-step-guide-7d75f33ccea1). ##### Sample inference code: ```python def chat(): logger.info('[Entering chat session ...]') logger.info(f'To quit the conversation and reset memory, please type "{RESET_CMD}"') query_history = [] while True: utterance = input('You: ') # Exit session if user types the RESET prompt if utterance == RESET_PROMPT: logger.info(f'[Exiting chat session]') break # Add speaker 1 id to start of query and encode it using the tokenizer input_ids = tokenizer.encode(utterance) input_ids = [speaker_1_id] + input_ids query_history.append(input_ids) if len(query_history) >= MAX_TURNS: num_exceeded = len(query_history) - MAX_TURNS query_history = query_history[num_exceeded:] # Add beginning of sequence and end of sequence ids to input_ids, and convert it to a tensor input_ids = [bos_id] + list(chain.from_iterable(query_history)) + [speaker_2_id] # Determine the speaker of the first turn based on the first speaker id start_sp_id = query_history[0][0] # Determine the speaker of the next turn next_sp_id = speaker_1_id if start_sp_id == speaker_2_id else speaker_2_id # Create token type ids for each turn based on the speaker of the turn token_type_ids = [[start_sp_id] * len(turn) if h % 2 == 0 else [next_sp_id] * len(turn) for h, turn in enumerate(query_history)] # Add beginning of sequence and end of sequence ids to token_type_ids, and convert it to a tensor token_type_ids = [start_sp_id] + list(chain.from_iterable(token_type_ids)) + [speaker_2_id] # Determine the length of the input_ids tensor input_len = len(input_ids) # Convert input_ids and token_type_ids to PyTorch tensors, add an extra dimension, and move to the device (GPU) input_ids = torch.LongTensor(input_ids).unsqueeze(0).to(device) token_type_ids = torch.LongTensor(token_type_ids).unsqueeze(0).to(device) # generate a response from the model given some input output_ids = model.generate(input_ids=input_ids, token_type_ids=token_type_ids, pad_token_id=eos_id, do_sample=True, top_p=TOP_P, max_length=MAX_LEN) # extract the generated sequence from the output and remove the input sequence output_ids = output_ids[0].tolist()[input_len:] # convert the generated sequence of token ids into text response = tokenizer.decode(output_ids, skip_special_tokens=True) print(f'Bot: {response}') # append the generated sequence to the query history as token ids query_history.append([speaker_2_id] + tokenizer.encode(response)) ```