File size: 10,771 Bytes
d727a17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import os
import sys
from typing import Tuple, Union
import fire
import torch
from datasets import load_dataset
from handler import DataHandler
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
)
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
DataCollatorForSeq2Seq,
LlamaForCausalLM,
LlamaTokenizer,
Trainer,
TrainingArguments,
)
def main(
model: str, # e.g. "decapoda-research/llama-7b-hf"
val_set_size: Union[int, float] = 0.1,
prompt_template: str = "/home/ubuntu/LLM/.conda/om/medAlpaca/medalpaca/prompts/medalpaca.json",
model_max_length: int = 256, # should not exceed 2048, as LLaMA is trained with this
train_on_inputs: bool = True, # if False, masks out inputs in loss
data_path: str = "medical_meadow_small.json",
train_in_8bit: bool = True,
use_lora: bool = True,
lora_r: int = 8,
lora_alpha: int = 16,
lora_dropout: float = 0.1,
lora_target_modules: Tuple[str] = ("q_proj", "v_proj"),
per_device_batch_size: int = 8,
num_epochs: int = 2,
learning_rate: float = 2e-5,
global_batch_size: int = 128,
output_dir: str = "./output",
save_total_limit: int = 3,
eval_steps: int = 200,
device_map: str = "auto",
group_by_length: bool = False,
wandb_run_name: str = "test",
use_wandb: bool = False,
wandb_project: str = "medalpaca",
optim: str = "adamw_torch",
lr_scheduler_type: str = "cosine",
fp16: bool = True,
bf16: bool = False,
gradient_checkpointing: bool = False,
warmup_steps: int = 100,
fsdp: str = "full_shard auto_wrap",
fsdp_transformer_layer_cls_to_wrap: str = "LlamaDecoderLayer",
**kwargs
):
"""
Trains a large language model using HuggingFace Transformers with custom configuration options.
Args:
model (str, optional):
The model identifier on HuggingFace Model Hub.
val_set_size (Union[int, float], optional):
The proportion or number of samples to use for validation. Default is 0.1.
prompt_template (str, optional):
The path to the JSON file containing prompt templates. Default is "/home/ubuntu/LLM/.conda/om/medAlpaca/medalpaca/prompts/medalpaca.json".
model_max_length (int, optional):
The maximum length for model inputs. Default is 256.
train_on_inputs (bool, optional):
Whether to train on input tokens. Default is True.
data_path (str, optional):
The path to the dataset file. Default is "medical_meadow_small.json".
train_in_8bit (bool, optional):
Whether to use 8-bit training. Default is True.
use_lora (bool, optional):
Whether to use the Lora method. Default is True.
lora_r (int, optional):
The Lora method's reduction factor. Default is 8.
lora_alpha (int, optional):
The Lora method's alpha parameter. Default is 16.
lora_dropout (float, optional):
The dropout rate for Lora. Default is 0.1.
lora_target_modules (List[str], optional):
The target modules for Lora. Default is ["q_proj","v_proj"].
per_device_batch_size (int, optional):
The batch size per device. Default is 2.
num_epochs (int, optional):
The number of epochs for training. Default is 3.
learning_rate (float, optional):
The learning rate for the optimizer. Default is 2e-5.
global_batch_size (int, optional):
The number of samples the model needs to see until the weights get updated.
Default is 128.
output_dir (str, optional):
The directory to save the model and outputs. Default is "./output".
save_total_limit (int, optional):
The maximum number of saved checkpoints. Default is 3.
eval_steps (int, optional):
The number of steps between evaluations. Default is 200.
device_map (str, optional):
The device placement strategy. Default is "auto".
group_by_length (bool, optional):
Whether to group samples by length for batch construction. Default is False.
wandb_run_name (str, optional):
The run name for Weights & Biases logging. Default is "test".
use_wandb (bool, optional):
Whether to use Weights & Biases for logging. Default is False.
wandb_project (str, optional):
The Weights & Biases project name. Default is "medalpaca".
optim (str, optional):
The optimizer to use. Default is "adamw_torch".
lr_scheduler_type (str, optional):
The learning rate scheduler type. Default is "cosine".
fp16 (bool, optional):
Whether to use mixed precision training (FP16). Default is True.
bf16 (bool, optional):
Whether to use mixed precision training (BF16). Default is False.
gradient_checkpointing (bool, optional):
Whether to use gradient checkpointing during training to reduce memory footprint
warmup_steps (int, optional):
The number of steps for warmup. Default is 200.
fsdp (str, optional):
Fully Sharded Data Parallel strategy. Only active with distributed training.
Default is "full_shard auto_wrap"
fsdp_transformer_layer_cls_to_wrap (optiona, str):
The model layer to wrap for fsdp. Default is "LlamaDecoderLayer".
**kwargs:
additional arguments passed to the transformers.TrainingArguments"""
# adapt arguments
model_name = "decapoda-research/llama-7b-hf"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
gradient_accumulation_steps = global_batch_size // per_device_batch_size
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
if use_lora:
# integer and mixed dtypes are not supported with fsdp
fsdp, fsdp_transformer_layer_cls_to_wrap = "", None
else:
fsdp, fsdp_transformer_layer_cls_to_wrap = "", None
if len(wandb_project) > 0:
os.environ["WANDB_PROJECT"] = wandb_project
# perform some checks, to raise errors early
if fp16 and bf16:
raise ValueError("At most one of fp16 and bf16 can be True, but not both.")
if train_in_8bit and not use_lora:
raise ValueError("8bit training without LoRA is not supported")
if use_lora and gradient_checkpointing:
raise ValueError("gradient_checkpointing with LoRA training is not implemented")
# init model
if "llama" in model_name:
# The LLaMA config on HF is not up to date with the library,
# leading to errors when using AutoModelForCausalLM
load_model = LlamaForCausalLM
else:
load_model = AutoModelForCausalLM
# loading the model with torch_dtype=torch.float16 with only fp16 and no LoRA leads
# to `ValueError: Attempting to unscale FP16 gradients.`
model = load_model.from_pretrained(
model_name,
load_in_8bit=train_in_8bit,
torch_dtype=torch.float16 if any([use_lora, bf16]) else torch.float32,
device_map=device_map,
)
if train_in_8bit:
model = prepare_model_for_int8_training(model)
if use_lora:
lora_config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
# init tokenizer and tokenize function
if "llama" in model_name.lower():
tokenizer = LlamaTokenizer.from_pretrained(model_name)
else:
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token_id = 0
tokenizer.padding_side = "left"
# load and tokenize data
data_handler = DataHandler(
tokenizer=tokenizer,
prompt_template=prompt_template,
model_max_length=model_max_length,
train_on_inputs=train_on_inputs,
)
data = load_dataset("json", data_files=data_path)
if val_set_size > 0:
data = (
data["train"]
.train_test_split(test_size=val_set_size, shuffle=True, seed=42)
.map(data_handler.generate_and_tokenize_prompt)
)
else:
data = data.shuffle(seed=42).map(data_handler.generate_and_tokenize_prompt)
if not ddp and torch.cuda.device_count() > 1:
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
# init trainer
training_args = TrainingArguments(
per_device_train_batch_size=per_device_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
gradient_checkpointing=gradient_checkpointing,
warmup_steps=warmup_steps,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
fp16=fp16,
bf16=bf16,
logging_steps=10,
optim=optim,
lr_scheduler_type=lr_scheduler_type,
evaluation_strategy="steps" if val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=eval_steps if val_set_size > 0 else None,
save_steps=eval_steps,
output_dir=output_dir,
save_total_limit=save_total_limit,
load_best_model_at_end=True if val_set_size > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
report_to="wandb" if use_wandb else None,
run_name=wandb_run_name if use_wandb else None,
fsdp=fsdp,
fsdp_transformer_layer_cls_to_wrap=fsdp_transformer_layer_cls_to_wrap,
**kwargs
)
trainer = Trainer(
model=model,
train_dataset=data["train"],
eval_dataset=data["test"], # if val_set_size > 0 else None
args=training_args,
data_collator=DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
# for whatever reason, it is important that this is executed after trainer
# is initialized. Otherwise you run into data indexing error, as the
# trainer drops all columns in the dataset
model.config.use_cache = False
if use_lora:
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
# finally, train
trainer.train()
model.save_pretrained(output_dir)
if __name__ == "__main__":
fire.Fire(main)
|