--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: mms-1b-all-lg-CV-Fleurs_filtered-100hrs-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: fleurs config: lg_ug split: test args: lg_ug metrics: - name: Wer type: wer value: 0.4098153547133139 --- # mms-1b-all-lg-CV-Fleurs_filtered-100hrs-v1 This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.2897 - Wer: 0.4098 - Cer: 0.0743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 70 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 0.3203 | 1.0 | 7125 | 0.3178 | 0.4156 | 0.0762 | | 0.2149 | 2.0 | 14250 | 0.3008 | 0.4194 | 0.0759 | | 0.2093 | 3.0 | 21375 | 0.3015 | 0.4017 | 0.0743 | | 0.2064 | 4.0 | 28500 | 0.3043 | 0.4114 | 0.0745 | | 0.2042 | 5.0 | 35625 | 0.2955 | 0.4069 | 0.0753 | | 0.2022 | 6.0 | 42750 | 0.3009 | 0.4088 | 0.0750 | | 0.1989 | 7.0 | 49875 | 0.3088 | 0.4092 | 0.0756 | | 0.1983 | 8.0 | 57000 | 0.2980 | 0.4081 | 0.0754 | | 0.1969 | 9.0 | 64125 | 0.2951 | 0.4040 | 0.0741 | | 0.1957 | 10.0 | 71250 | 0.2899 | 0.4039 | 0.0745 | | 0.1945 | 11.0 | 78375 | 0.2896 | 0.4083 | 0.0744 | | 0.1936 | 12.0 | 85500 | 0.2931 | 0.4038 | 0.0743 | | 0.1929 | 13.0 | 92625 | 0.2897 | 0.4098 | 0.0743 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.1.0+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3