File size: 6,376 Bytes
8063b36 6564b2c 8063b36 6564b2c 8063b36 6564b2c 8063b36 6564b2c 8063b36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- crows_pairs
metrics:
- accuracy
model-index:
- name: multiberts-seed_0_crows_pairs_classifieronly
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: crows_pairs
type: crows_pairs
config: crows_pairs
split: test
args: crows_pairs
metrics:
- name: Accuracy
type: accuracy
value: 0.5132450331125827
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multiberts-seed_0_crows_pairs_classifieronly
This model is a fine-tuned version of [google/multiberts-seed_0](https://huggingface.co/google/multiberts-seed_0) on the crows_pairs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6940
- Accuracy: 0.5132
- Tp: 0.0695
- Tn: 0.4437
- Fp: 0.0199
- Fn: 0.4669
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Tp | Tn | Fp | Fn |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------:|:------:|
| 0.7145 | 1.05 | 20 | 0.6927 | 0.5166 | 0.4172 | 0.0993 | 0.3642 | 0.1192 |
| 0.7091 | 2.11 | 40 | 0.6916 | 0.5166 | 0.4967 | 0.0199 | 0.4437 | 0.0397 |
| 0.7005 | 3.16 | 60 | 0.6943 | 0.4702 | 0.1854 | 0.2848 | 0.1788 | 0.3510 |
| 0.7106 | 4.21 | 80 | 0.6976 | 0.4669 | 0.0033 | 0.4636 | 0.0 | 0.5331 |
| 0.7038 | 5.26 | 100 | 0.6933 | 0.5132 | 0.3411 | 0.1722 | 0.2914 | 0.1954 |
| 0.7012 | 6.32 | 120 | 0.6974 | 0.4669 | 0.0033 | 0.4636 | 0.0 | 0.5331 |
| 0.7 | 7.37 | 140 | 0.6918 | 0.5199 | 0.4768 | 0.0430 | 0.4205 | 0.0596 |
| 0.7082 | 8.42 | 160 | 0.6960 | 0.4702 | 0.0066 | 0.4636 | 0.0 | 0.5298 |
| 0.699 | 9.47 | 180 | 0.6936 | 0.5199 | 0.2781 | 0.2417 | 0.2219 | 0.2583 |
| 0.7004 | 10.53 | 200 | 0.7043 | 0.4636 | 0.0 | 0.4636 | 0.0 | 0.5364 |
| 0.6948 | 11.58 | 220 | 0.6907 | 0.5232 | 0.5199 | 0.0033 | 0.4603 | 0.0166 |
| 0.7132 | 12.63 | 240 | 0.6979 | 0.4669 | 0.0033 | 0.4636 | 0.0 | 0.5331 |
| 0.7062 | 13.68 | 260 | 0.6930 | 0.5232 | 0.3444 | 0.1788 | 0.2848 | 0.1921 |
| 0.6983 | 14.74 | 280 | 0.6966 | 0.4669 | 0.0033 | 0.4636 | 0.0 | 0.5331 |
| 0.6996 | 15.79 | 300 | 0.6927 | 0.5265 | 0.3742 | 0.1523 | 0.3113 | 0.1623 |
| 0.7039 | 16.84 | 320 | 0.6972 | 0.4669 | 0.0033 | 0.4636 | 0.0 | 0.5331 |
| 0.6862 | 17.89 | 340 | 0.6914 | 0.5232 | 0.4967 | 0.0265 | 0.4371 | 0.0397 |
| 0.6943 | 18.95 | 360 | 0.6947 | 0.4934 | 0.0430 | 0.4503 | 0.0132 | 0.4934 |
| 0.7063 | 20.0 | 380 | 0.6907 | 0.5232 | 0.5199 | 0.0033 | 0.4603 | 0.0166 |
| 0.7087 | 21.05 | 400 | 0.6947 | 0.4834 | 0.0331 | 0.4503 | 0.0132 | 0.5033 |
| 0.7033 | 22.11 | 420 | 0.6945 | 0.4934 | 0.0464 | 0.4470 | 0.0166 | 0.4901 |
| 0.7025 | 23.16 | 440 | 0.6934 | 0.4967 | 0.2185 | 0.2781 | 0.1854 | 0.3179 |
| 0.7035 | 24.21 | 460 | 0.6944 | 0.5033 | 0.0563 | 0.4470 | 0.0166 | 0.4801 |
| 0.6958 | 25.26 | 480 | 0.6941 | 0.5199 | 0.0795 | 0.4404 | 0.0232 | 0.4570 |
| 0.6955 | 26.32 | 500 | 0.6946 | 0.4868 | 0.0364 | 0.4503 | 0.0132 | 0.5 |
| 0.7046 | 27.37 | 520 | 0.6932 | 0.5199 | 0.2715 | 0.2483 | 0.2152 | 0.2649 |
| 0.6955 | 28.42 | 540 | 0.6954 | 0.4702 | 0.0066 | 0.4636 | 0.0 | 0.5298 |
| 0.7095 | 29.47 | 560 | 0.6961 | 0.4702 | 0.0066 | 0.4636 | 0.0 | 0.5298 |
| 0.6953 | 30.53 | 580 | 0.6919 | 0.5132 | 0.4371 | 0.0762 | 0.3874 | 0.0993 |
| 0.7124 | 31.58 | 600 | 0.6946 | 0.4834 | 0.0331 | 0.4503 | 0.0132 | 0.5033 |
| 0.6929 | 32.63 | 620 | 0.6936 | 0.5265 | 0.1457 | 0.3808 | 0.0828 | 0.3907 |
| 0.7103 | 33.68 | 640 | 0.6926 | 0.5265 | 0.3477 | 0.1788 | 0.2848 | 0.1887 |
| 0.6993 | 34.74 | 660 | 0.6937 | 0.5166 | 0.1192 | 0.3974 | 0.0662 | 0.4172 |
| 0.6975 | 35.79 | 680 | 0.6936 | 0.5199 | 0.1291 | 0.3907 | 0.0728 | 0.4073 |
| 0.6935 | 36.84 | 700 | 0.6937 | 0.5199 | 0.1026 | 0.4172 | 0.0464 | 0.4338 |
| 0.7039 | 37.89 | 720 | 0.6925 | 0.5232 | 0.3642 | 0.1589 | 0.3046 | 0.1722 |
| 0.6999 | 38.95 | 740 | 0.6941 | 0.5099 | 0.0662 | 0.4437 | 0.0199 | 0.4702 |
| 0.6965 | 40.0 | 760 | 0.6948 | 0.4735 | 0.0166 | 0.4570 | 0.0066 | 0.5199 |
| 0.7039 | 41.05 | 780 | 0.6944 | 0.4934 | 0.0430 | 0.4503 | 0.0132 | 0.4934 |
| 0.7026 | 42.11 | 800 | 0.6939 | 0.5199 | 0.0795 | 0.4404 | 0.0232 | 0.4570 |
| 0.7072 | 43.16 | 820 | 0.6930 | 0.5199 | 0.2781 | 0.2417 | 0.2219 | 0.2583 |
| 0.7064 | 44.21 | 840 | 0.6930 | 0.5199 | 0.2781 | 0.2417 | 0.2219 | 0.2583 |
| 0.6982 | 45.26 | 860 | 0.6933 | 0.5199 | 0.2119 | 0.3079 | 0.1556 | 0.3245 |
| 0.6921 | 46.32 | 880 | 0.6935 | 0.5232 | 0.1490 | 0.3742 | 0.0894 | 0.3874 |
| 0.6983 | 47.37 | 900 | 0.6939 | 0.5199 | 0.0762 | 0.4437 | 0.0199 | 0.4603 |
| 0.6938 | 48.42 | 920 | 0.6940 | 0.5132 | 0.0695 | 0.4437 | 0.0199 | 0.4669 |
| 0.6984 | 49.47 | 940 | 0.6940 | 0.5132 | 0.0695 | 0.4437 | 0.0199 | 0.4669 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.2
|