--- base_model: ytu-ce-cosmos/Turkish-LLaVA-v0.1 license: mit language: - tr tags: - LLaVA - llava_llama pipeline_tag: image-text-to-text --- # Turkish-LLaVA-v0.1-Q4_K_M-GGUF This model is a converted and quantized version of [ytu-ce-cosmos/Turkish-LLaVA-v0.1](https://huggingface.co/ytu-ce-cosmos/Turkish-LLaVA-v0.1) vision-language model using [llama.cpp](https://github.com/ggerganov/llama.cpp). ## Usage You can use the model with [`llama-cpp-python`](https://github.com/abetlen/llama-cpp-python) package as following: ```py from llama_cpp import Llama from llama_cpp.llama_chat_format import Llama3VisionAlphaChatHandler llm = Llama( model_path="Turkish-LLaVA-v0.1-Q4_K_M.gguf", # path to language model n_gpu_layers=-1, # for running on GPU chat_handler=Llama3VisionAlphaChatHandler( # path to image encoder clip_model_path="Turkish-LLaVA-v0.1-mmproj-F16.gguf", ), seed=1337, # for reproducing same results n_ctx=4096, # n_ctx should be increased to accommodate the image embedding verbose=False, # disable the logging ) # url for the input image url = "https://huggingface.co/ytu-ce-cosmos/Turkish-LLaVA-v0.1/resolve/main/example.jpg" messages = [ {"role": "system", "content": "Sen yardımsever bir asistansın."}, { "role": "user", "content": [ {"type" : "text", "text": "Bu resimde neler görüyorsun?"}, {"type": "image_url", "image_url": {"url": url}} ] }, ] response = llm.create_chat_completion( messages=messages, max_tokens=64, ) print(response["choices"][0]["message"]["content"]) # Output: Resimde, sarı çiçeklerle çevrili bir köpek yavrusu görülüyor. ```