--- library_name: transformers license: apache-2.0 base_model: google-t5/t5-small tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: t5_small_samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: validation args: samsum metrics: - name: Rouge1 type: rouge value: 0.4282 --- # t5_small_samsum This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.7255 - Rouge1: 0.4282 - Rouge2: 0.2003 - Rougel: 0.36 - Rougelsum: 0.3596 - Gen Len: 16.7372 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.9452 | 1.0 | 921 | 1.7726 | 0.4147 | 0.1901 | 0.3492 | 0.3493 | 16.4719 | | 1.8952 | 2.0 | 1842 | 1.7498 | 0.4237 | 0.1971 | 0.3577 | 0.3577 | 16.4548 | | 1.8703 | 3.0 | 2763 | 1.7323 | 0.4243 | 0.1968 | 0.3571 | 0.3566 | 16.7689 | | 1.8579 | 4.0 | 3684 | 1.7310 | 0.4262 | 0.2012 | 0.3606 | 0.3604 | 16.7641 | | 1.8525 | 5.0 | 4605 | 1.7255 | 0.4282 | 0.2003 | 0.36 | 0.3596 | 16.7372 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1