--- license: llama3 language: - my base_model: meta-llama/Meta-Llama-3-8B library_name: transformers --- # Llama3 8B for Burmese: No vocabulary adaptation This model is built on top of Llama3 8B adapted for Burmese using 30K target language sentences sampled from CC-100. ## Model Details * **Vocabulary**: This model has no additional target vocabulary. It retains the original vocabulary of Llama3 8B. ## Model Description - **Language:** Burmese - **License:** Llama 3 Community License Agreement - **Fine-tuned from model:** meta-llama/Meta-Llama-3-8B ## Model Sources - **Repository:** https://github.com/gucci-j/lowres-cve - **Paper:** https://arxiv.org/abs/2406.11477 ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModelForCausalLM model = AutoModelForCausalLM.from_pretrained( "meta-llama/Meta-Llama-3-8B" ) model = PeftModelForCausalLM.from_pretrained( model, "atsuki-yamaguchi/Llama-3-8B-my-30K-lapt" ) model = model.merge_and_unload() tokenizer = AutoTokenizer.from_pretrained( "meta-llama/Meta-Llama-3-8B" ) ``` ## Citation ``` @article{yamaguchi-etal-2024-effectively, title={How Can We Effectively Expand the Vocabulary of LLMs with 0.01GB of Target Language Text?}, author={Atsuki Yamaguchi and Aline Villavicencio and Nikolaos Aletras}, year={2024}, journal={ArXiv}, year={2024}, volume={abs/2406.11477}, url={https://arxiv.org/abs/2406.11477}, } ```