qCammel-70-x / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
f2566a1 verified
|
raw
history blame
5.05 kB
metadata
language:
  - en
license: other
library_name: transformers
tags:
  - pytorch
  - llama
  - llama-2
  - qCammel-70
pipeline_tag: text-generation
inference: false
model-index:
  - name: qCammel-70v1
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 68.34
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 87.87
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 70.18
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 57.47
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 84.29
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70v1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 29.72
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=augtoma/qCammel-70v1
          name: Open LLM Leaderboard

qCammel-70

qCammel-70 is a fine-tuned version of Llama-2 70B model, trained on a distilled dataset of 15,000 instructions using QLoRA. This model is optimized for academic medical knowledge and instruction-following capabilities.

Model Details

Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the website and accept their License before downloading this model .

The fine-tuning process applied to qCammel-70 involves a distilled dataset of 15,000 instructions and is trained with QLoRA,

Variations The original Llama 2 has parameter sizes of 7B, 13B, and 70B. This is the fine-tuned version of the 70B model.

Input Models input text only.

Output Models generate text only.

Model Architecture qCammel-70 is based on the Llama 2 architecture, an auto-regressive language model that uses a decoder only transformer architecture.

License A custom commercial license is available at: https://ai.meta.com/resources/models-and-libraries/llama-downloads/ Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved

Research Papers

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 66.31
AI2 Reasoning Challenge (25-Shot) 68.34
HellaSwag (10-Shot) 87.87
MMLU (5-Shot) 70.18
TruthfulQA (0-shot) 57.47
Winogrande (5-shot) 84.29
GSM8k (5-shot) 29.72