File size: 3,075 Bytes
e344547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad8978d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e344547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- mnist
metrics:
- accuracy
model-index:
- name: image-classification
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: mnist
      type: mnist
      args: mnist
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9833333333333333
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: autoevaluate/mnist-sample
      type: autoevaluate/mnist-sample
      config: autoevaluate--mnist-sample
      split: test
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.95
      verified: true
    - name: Precision Macro
      type: precision
      value: 0.9478535353535353
      verified: true
    - name: Precision Micro
      type: precision
      value: 0.95
      verified: true
    - name: Precision Weighted
      type: precision
      value: 0.9510353535353535
      verified: true
    - name: Recall Macro
      type: recall
      value: 0.9530555555555555
      verified: true
    - name: Recall Micro
      type: recall
      value: 0.95
      verified: true
    - name: Recall Weighted
      type: recall
      value: 0.95
      verified: true
    - name: F1 Macro
      type: f1
      value: 0.9496669557378175
      verified: true
    - name: F1 Micro
      type: f1
      value: 0.9500000000000001
      verified: true
    - name: F1 Weighted
      type: f1
      value: 0.9496869212452598
      verified: true
    - name: loss
      type: loss
      value: 0.12397973984479904
      verified: true
    - name: matthews_correlation
      type: matthews_correlation
      value: 0.9442456228021371
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# image-classification

This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the mnist dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0556
- Accuracy: 0.9833

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3743        | 1.0   | 422  | 0.0556          | 0.9833   |


### Framework versions

- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1