File size: 3,075 Bytes
e344547 ad8978d e344547 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- mnist
metrics:
- accuracy
model-index:
- name: image-classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: mnist
type: mnist
args: mnist
metrics:
- name: Accuracy
type: accuracy
value: 0.9833333333333333
- task:
type: image-classification
name: Image Classification
dataset:
name: autoevaluate/mnist-sample
type: autoevaluate/mnist-sample
config: autoevaluate--mnist-sample
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.95
verified: true
- name: Precision Macro
type: precision
value: 0.9478535353535353
verified: true
- name: Precision Micro
type: precision
value: 0.95
verified: true
- name: Precision Weighted
type: precision
value: 0.9510353535353535
verified: true
- name: Recall Macro
type: recall
value: 0.9530555555555555
verified: true
- name: Recall Micro
type: recall
value: 0.95
verified: true
- name: Recall Weighted
type: recall
value: 0.95
verified: true
- name: F1 Macro
type: f1
value: 0.9496669557378175
verified: true
- name: F1 Micro
type: f1
value: 0.9500000000000001
verified: true
- name: F1 Weighted
type: f1
value: 0.9496869212452598
verified: true
- name: loss
type: loss
value: 0.12397973984479904
verified: true
- name: matthews_correlation
type: matthews_correlation
value: 0.9442456228021371
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# image-classification
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the mnist dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0556
- Accuracy: 0.9833
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3743 | 1.0 | 422 | 0.0556 | 0.9833 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|