avinash2468
commited on
Commit
•
2f2894c
1
Parent(s):
034e734
Upload folder using huggingface_hub
Browse files- README.md +32 -35
- config.json +1 -1
- config_sentence_transformers.json +3 -3
- model.safetensors +1 -1
- modules.json +6 -0
- special_tokens_map.json +5 -35
- tokenizer.json +2 -4
README.md
CHANGED
@@ -4,7 +4,6 @@ tags:
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
-
- transformers
|
8 |
|
9 |
---
|
10 |
|
@@ -35,50 +34,47 @@ print(embeddings)
|
|
35 |
|
36 |
|
37 |
|
38 |
-
##
|
39 |
-
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
40 |
-
|
41 |
-
```python
|
42 |
-
from transformers import AutoTokenizer, AutoModel
|
43 |
-
import torch
|
44 |
-
|
45 |
-
|
46 |
-
#Mean Pooling - Take attention mask into account for correct averaging
|
47 |
-
def mean_pooling(model_output, attention_mask):
|
48 |
-
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
49 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
50 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
51 |
-
|
52 |
|
53 |
-
|
54 |
-
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
|
56 |
-
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
58 |
-
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
59 |
|
60 |
-
# Tokenize sentences
|
61 |
-
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
62 |
|
63 |
-
|
64 |
-
with
|
65 |
-
model_output = model(**encoded_input)
|
66 |
|
67 |
-
|
68 |
-
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
69 |
|
70 |
-
|
71 |
-
|
|
|
72 |
```
|
73 |
|
|
|
74 |
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
## Full Model Architecture
|
@@ -86,6 +82,7 @@ For an automated evaluation of this model, see the *Sentence Embeddings Benchmar
|
|
86 |
SentenceTransformer(
|
87 |
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
88 |
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
|
|
89 |
)
|
90 |
```
|
91 |
|
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
|
|
7 |
|
8 |
---
|
9 |
|
|
|
34 |
|
35 |
|
36 |
|
37 |
+
## Evaluation Results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
<!--- Describe how your model was evaluated -->
|
|
|
40 |
|
41 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
|
|
|
|
42 |
|
|
|
|
|
43 |
|
44 |
+
## Training
|
45 |
+
The model was trained with the parameters:
|
|
|
46 |
|
47 |
+
**DataLoader**:
|
|
|
48 |
|
49 |
+
`torch.utils.data.dataloader.DataLoader` of length 176 with parameters:
|
50 |
+
```
|
51 |
+
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
52 |
```
|
53 |
|
54 |
+
**Loss**:
|
55 |
|
56 |
+
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
57 |
+
```
|
58 |
+
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
59 |
+
```
|
60 |
|
61 |
+
Parameters of the fit()-Method:
|
62 |
+
```
|
63 |
+
{
|
64 |
+
"epochs": 1,
|
65 |
+
"evaluation_steps": 0,
|
66 |
+
"evaluator": "NoneType",
|
67 |
+
"max_grad_norm": 1,
|
68 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
69 |
+
"optimizer_params": {
|
70 |
+
"lr": 2e-05
|
71 |
+
},
|
72 |
+
"scheduler": "WarmupLinear",
|
73 |
+
"steps_per_epoch": null,
|
74 |
+
"warmup_steps": 10000,
|
75 |
+
"weight_decay": 0.01
|
76 |
+
}
|
77 |
+
```
|
78 |
|
79 |
|
80 |
## Full Model Architecture
|
|
|
82 |
SentenceTransformer(
|
83 |
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
84 |
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
85 |
+
(2): Normalize()
|
86 |
)
|
87 |
```
|
88 |
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_multi-qa-MiniLM-L6-cos-v1/",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
config_sentence_transformers.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
-
"sentence_transformers": "2.
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "
|
6 |
}
|
7 |
}
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.6.1",
|
5 |
+
"pytorch": "1.8.1"
|
6 |
}
|
7 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 90864192
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e4da8d8e776c0fd2da0c47f9cf34e88dd3ad43288b0e864d94ba4ab638c2ce4
|
3 |
size 90864192
|
modules.json
CHANGED
@@ -10,5 +10,11 @@
|
|
10 |
"name": "1",
|
11 |
"path": "1_Pooling",
|
12 |
"type": "sentence_transformers.models.Pooling"
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
}
|
14 |
]
|
|
|
10 |
"name": "1",
|
11 |
"path": "1_Pooling",
|
12 |
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
}
|
20 |
]
|
special_tokens_map.json
CHANGED
@@ -1,37 +1,7 @@
|
|
1 |
{
|
2 |
-
"cls_token":
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
"single_word": false
|
8 |
-
},
|
9 |
-
"mask_token": {
|
10 |
-
"content": "[MASK]",
|
11 |
-
"lstrip": false,
|
12 |
-
"normalized": false,
|
13 |
-
"rstrip": false,
|
14 |
-
"single_word": false
|
15 |
-
},
|
16 |
-
"pad_token": {
|
17 |
-
"content": "[PAD]",
|
18 |
-
"lstrip": false,
|
19 |
-
"normalized": false,
|
20 |
-
"rstrip": false,
|
21 |
-
"single_word": false
|
22 |
-
},
|
23 |
-
"sep_token": {
|
24 |
-
"content": "[SEP]",
|
25 |
-
"lstrip": false,
|
26 |
-
"normalized": false,
|
27 |
-
"rstrip": false,
|
28 |
-
"single_word": false
|
29 |
-
},
|
30 |
-
"unk_token": {
|
31 |
-
"content": "[UNK]",
|
32 |
-
"lstrip": false,
|
33 |
-
"normalized": false,
|
34 |
-
"rstrip": false,
|
35 |
-
"single_word": false
|
36 |
-
}
|
37 |
}
|
|
|
1 |
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
}
|
tokenizer.json
CHANGED
@@ -2,14 +2,12 @@
|
|
2 |
"version": "1.0",
|
3 |
"truncation": {
|
4 |
"direction": "Right",
|
5 |
-
"max_length":
|
6 |
"strategy": "LongestFirst",
|
7 |
"stride": 0
|
8 |
},
|
9 |
"padding": {
|
10 |
-
"strategy":
|
11 |
-
"Fixed": 250
|
12 |
-
},
|
13 |
"direction": "Right",
|
14 |
"pad_to_multiple_of": null,
|
15 |
"pad_id": 0,
|
|
|
2 |
"version": "1.0",
|
3 |
"truncation": {
|
4 |
"direction": "Right",
|
5 |
+
"max_length": 512,
|
6 |
"strategy": "LongestFirst",
|
7 |
"stride": 0
|
8 |
},
|
9 |
"padding": {
|
10 |
+
"strategy": "BatchLongest",
|
|
|
|
|
11 |
"direction": "Right",
|
12 |
"pad_to_multiple_of": null,
|
13 |
"pad_id": 0,
|