thegeek13242
commited on
Commit
•
b2898f0
1
Parent(s):
688a87a
api done
Browse files- .gitignore +2 -0
- airline_sentiment_analysis.csv +0 -0
- api.py +8 -0
- infer.py +29 -0
- requirements.txt +7 -0
- train.ipynb +1154 -0
- weights.h5 +3 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
venv
|
2 |
+
/__pycache__/
|
airline_sentiment_analysis.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
api.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
import infer
|
3 |
+
|
4 |
+
app = FastAPI()
|
5 |
+
|
6 |
+
@app.post("/predict")
|
7 |
+
async def predict(text: str):
|
8 |
+
return {"prediction": infer.predict(text)}
|
infer.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import emoji
|
3 |
+
import tensorflow as tf
|
4 |
+
from transformers import BertTokenizer,TFBertForSequenceClassification
|
5 |
+
|
6 |
+
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased')
|
7 |
+
model.load_weights('weights.h5')
|
8 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
9 |
+
|
10 |
+
def preprocess(text):
|
11 |
+
text = emoji.demojize(text)
|
12 |
+
text = text.replace(":"," ")
|
13 |
+
text = ' '.join(text.split())
|
14 |
+
text = re.sub("@[A-Za-z0-9]+", "", text)
|
15 |
+
text = re.sub("#", "", text)
|
16 |
+
text = re.sub("https?://[A-Za-z0-9./]+", "", text)
|
17 |
+
text = re.sub("[^a-zA-Z.!?']", " ", text)
|
18 |
+
return text
|
19 |
+
|
20 |
+
def predict(text):
|
21 |
+
text = preprocess(text)
|
22 |
+
tf_batch = tokenizer([text], max_length=128, padding=True, truncation=True, return_tensors='tf')
|
23 |
+
tf_outputs = model(tf_batch)
|
24 |
+
tf_predictions = tf.nn.softmax(tf_outputs[0], axis=-1)
|
25 |
+
labels = ['Negative','Positive']
|
26 |
+
label = tf.argmax(tf_predictions, axis=1)
|
27 |
+
label = label.numpy()
|
28 |
+
return labels[label[0]]
|
29 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow-gpu<2.11
|
2 |
+
transformers
|
3 |
+
emoji
|
4 |
+
numpy
|
5 |
+
pandas
|
6 |
+
scikit-learn
|
7 |
+
fast-api
|
train.ipynb
ADDED
@@ -0,0 +1,1154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {
|
7 |
+
"id": "nwuC7017BwyD"
|
8 |
+
},
|
9 |
+
"outputs": [],
|
10 |
+
"source": [
|
11 |
+
"%pip install \"tensorflow-gpu<2.11\"\n",
|
12 |
+
"%pip install transformers\n",
|
13 |
+
"%pip install emoji\n",
|
14 |
+
"%pip install numpy pandas\n",
|
15 |
+
"%pip install scikit-learn"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "code",
|
20 |
+
"execution_count": 2,
|
21 |
+
"metadata": {
|
22 |
+
"id": "iM2I9UEjm_pE"
|
23 |
+
},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"import numpy as np\n",
|
27 |
+
"import pandas as pd"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": 3,
|
33 |
+
"metadata": {
|
34 |
+
"colab": {
|
35 |
+
"base_uri": "https://localhost:8080/",
|
36 |
+
"height": 676
|
37 |
+
},
|
38 |
+
"id": "mrnzcvkzm_pF",
|
39 |
+
"outputId": "fca854f8-422f-4868-e0c8-2c8abf4671f5"
|
40 |
+
},
|
41 |
+
"outputs": [
|
42 |
+
{
|
43 |
+
"data": {
|
44 |
+
"text/html": [
|
45 |
+
"<div>\n",
|
46 |
+
"<style scoped>\n",
|
47 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
48 |
+
" vertical-align: middle;\n",
|
49 |
+
" }\n",
|
50 |
+
"\n",
|
51 |
+
" .dataframe tbody tr th {\n",
|
52 |
+
" vertical-align: top;\n",
|
53 |
+
" }\n",
|
54 |
+
"\n",
|
55 |
+
" .dataframe thead th {\n",
|
56 |
+
" text-align: right;\n",
|
57 |
+
" }\n",
|
58 |
+
"</style>\n",
|
59 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
60 |
+
" <thead>\n",
|
61 |
+
" <tr style=\"text-align: right;\">\n",
|
62 |
+
" <th></th>\n",
|
63 |
+
" <th>Unnamed: 0</th>\n",
|
64 |
+
" <th>airline_sentiment</th>\n",
|
65 |
+
" <th>text</th>\n",
|
66 |
+
" </tr>\n",
|
67 |
+
" </thead>\n",
|
68 |
+
" <tbody>\n",
|
69 |
+
" <tr>\n",
|
70 |
+
" <th>0</th>\n",
|
71 |
+
" <td>1</td>\n",
|
72 |
+
" <td>positive</td>\n",
|
73 |
+
" <td>@VirginAmerica plus you've added commercials t...</td>\n",
|
74 |
+
" </tr>\n",
|
75 |
+
" <tr>\n",
|
76 |
+
" <th>1</th>\n",
|
77 |
+
" <td>3</td>\n",
|
78 |
+
" <td>negative</td>\n",
|
79 |
+
" <td>@VirginAmerica it's really aggressive to blast...</td>\n",
|
80 |
+
" </tr>\n",
|
81 |
+
" <tr>\n",
|
82 |
+
" <th>2</th>\n",
|
83 |
+
" <td>4</td>\n",
|
84 |
+
" <td>negative</td>\n",
|
85 |
+
" <td>@VirginAmerica and it's a really big bad thing...</td>\n",
|
86 |
+
" </tr>\n",
|
87 |
+
" <tr>\n",
|
88 |
+
" <th>3</th>\n",
|
89 |
+
" <td>5</td>\n",
|
90 |
+
" <td>negative</td>\n",
|
91 |
+
" <td>@VirginAmerica seriously would pay $30 a fligh...</td>\n",
|
92 |
+
" </tr>\n",
|
93 |
+
" <tr>\n",
|
94 |
+
" <th>4</th>\n",
|
95 |
+
" <td>6</td>\n",
|
96 |
+
" <td>positive</td>\n",
|
97 |
+
" <td>@VirginAmerica yes, nearly every time I fly VX...</td>\n",
|
98 |
+
" </tr>\n",
|
99 |
+
" <tr>\n",
|
100 |
+
" <th>5</th>\n",
|
101 |
+
" <td>8</td>\n",
|
102 |
+
" <td>positive</td>\n",
|
103 |
+
" <td>@virginamerica Well, I didn't…but NOW I DO! :-D</td>\n",
|
104 |
+
" </tr>\n",
|
105 |
+
" <tr>\n",
|
106 |
+
" <th>6</th>\n",
|
107 |
+
" <td>9</td>\n",
|
108 |
+
" <td>positive</td>\n",
|
109 |
+
" <td>@VirginAmerica it was amazing, and arrived an ...</td>\n",
|
110 |
+
" </tr>\n",
|
111 |
+
" <tr>\n",
|
112 |
+
" <th>7</th>\n",
|
113 |
+
" <td>11</td>\n",
|
114 |
+
" <td>positive</td>\n",
|
115 |
+
" <td>@VirginAmerica I &lt;3 pretty graphics. so muc...</td>\n",
|
116 |
+
" </tr>\n",
|
117 |
+
" <tr>\n",
|
118 |
+
" <th>8</th>\n",
|
119 |
+
" <td>12</td>\n",
|
120 |
+
" <td>positive</td>\n",
|
121 |
+
" <td>@VirginAmerica This is such a great deal! Alre...</td>\n",
|
122 |
+
" </tr>\n",
|
123 |
+
" <tr>\n",
|
124 |
+
" <th>9</th>\n",
|
125 |
+
" <td>13</td>\n",
|
126 |
+
" <td>positive</td>\n",
|
127 |
+
" <td>@VirginAmerica @virginmedia I'm flying your #f...</td>\n",
|
128 |
+
" </tr>\n",
|
129 |
+
" <tr>\n",
|
130 |
+
" <th>10</th>\n",
|
131 |
+
" <td>14</td>\n",
|
132 |
+
" <td>positive</td>\n",
|
133 |
+
" <td>@VirginAmerica Thanks!</td>\n",
|
134 |
+
" </tr>\n",
|
135 |
+
" <tr>\n",
|
136 |
+
" <th>11</th>\n",
|
137 |
+
" <td>15</td>\n",
|
138 |
+
" <td>negative</td>\n",
|
139 |
+
" <td>@VirginAmerica SFO-PDX schedule is still MIA.</td>\n",
|
140 |
+
" </tr>\n",
|
141 |
+
" <tr>\n",
|
142 |
+
" <th>12</th>\n",
|
143 |
+
" <td>16</td>\n",
|
144 |
+
" <td>positive</td>\n",
|
145 |
+
" <td>@VirginAmerica So excited for my first cross c...</td>\n",
|
146 |
+
" </tr>\n",
|
147 |
+
" <tr>\n",
|
148 |
+
" <th>13</th>\n",
|
149 |
+
" <td>17</td>\n",
|
150 |
+
" <td>negative</td>\n",
|
151 |
+
" <td>@VirginAmerica I flew from NYC to SFO last we...</td>\n",
|
152 |
+
" </tr>\n",
|
153 |
+
" <tr>\n",
|
154 |
+
" <th>14</th>\n",
|
155 |
+
" <td>18</td>\n",
|
156 |
+
" <td>positive</td>\n",
|
157 |
+
" <td>I ❤️ flying @VirginAmerica. ☺️👍</td>\n",
|
158 |
+
" </tr>\n",
|
159 |
+
" <tr>\n",
|
160 |
+
" <th>15</th>\n",
|
161 |
+
" <td>19</td>\n",
|
162 |
+
" <td>positive</td>\n",
|
163 |
+
" <td>@VirginAmerica you know what would be amazingl...</td>\n",
|
164 |
+
" </tr>\n",
|
165 |
+
" <tr>\n",
|
166 |
+
" <th>16</th>\n",
|
167 |
+
" <td>20</td>\n",
|
168 |
+
" <td>negative</td>\n",
|
169 |
+
" <td>@VirginAmerica why are your first fares in May...</td>\n",
|
170 |
+
" </tr>\n",
|
171 |
+
" <tr>\n",
|
172 |
+
" <th>17</th>\n",
|
173 |
+
" <td>21</td>\n",
|
174 |
+
" <td>positive</td>\n",
|
175 |
+
" <td>@VirginAmerica I love this graphic. http://t.c...</td>\n",
|
176 |
+
" </tr>\n",
|
177 |
+
" <tr>\n",
|
178 |
+
" <th>18</th>\n",
|
179 |
+
" <td>22</td>\n",
|
180 |
+
" <td>positive</td>\n",
|
181 |
+
" <td>@VirginAmerica I love the hipster innovation. ...</td>\n",
|
182 |
+
" </tr>\n",
|
183 |
+
" <tr>\n",
|
184 |
+
" <th>19</th>\n",
|
185 |
+
" <td>24</td>\n",
|
186 |
+
" <td>negative</td>\n",
|
187 |
+
" <td>@VirginAmerica you guys messed up my seating.....</td>\n",
|
188 |
+
" </tr>\n",
|
189 |
+
" </tbody>\n",
|
190 |
+
"</table>\n",
|
191 |
+
"</div>"
|
192 |
+
],
|
193 |
+
"text/plain": [
|
194 |
+
" Unnamed: 0 airline_sentiment \\\n",
|
195 |
+
"0 1 positive \n",
|
196 |
+
"1 3 negative \n",
|
197 |
+
"2 4 negative \n",
|
198 |
+
"3 5 negative \n",
|
199 |
+
"4 6 positive \n",
|
200 |
+
"5 8 positive \n",
|
201 |
+
"6 9 positive \n",
|
202 |
+
"7 11 positive \n",
|
203 |
+
"8 12 positive \n",
|
204 |
+
"9 13 positive \n",
|
205 |
+
"10 14 positive \n",
|
206 |
+
"11 15 negative \n",
|
207 |
+
"12 16 positive \n",
|
208 |
+
"13 17 negative \n",
|
209 |
+
"14 18 positive \n",
|
210 |
+
"15 19 positive \n",
|
211 |
+
"16 20 negative \n",
|
212 |
+
"17 21 positive \n",
|
213 |
+
"18 22 positive \n",
|
214 |
+
"19 24 negative \n",
|
215 |
+
"\n",
|
216 |
+
" text \n",
|
217 |
+
"0 @VirginAmerica plus you've added commercials t... \n",
|
218 |
+
"1 @VirginAmerica it's really aggressive to blast... \n",
|
219 |
+
"2 @VirginAmerica and it's a really big bad thing... \n",
|
220 |
+
"3 @VirginAmerica seriously would pay $30 a fligh... \n",
|
221 |
+
"4 @VirginAmerica yes, nearly every time I fly VX... \n",
|
222 |
+
"5 @virginamerica Well, I didn't…but NOW I DO! :-D \n",
|
223 |
+
"6 @VirginAmerica it was amazing, and arrived an ... \n",
|
224 |
+
"7 @VirginAmerica I <3 pretty graphics. so muc... \n",
|
225 |
+
"8 @VirginAmerica This is such a great deal! Alre... \n",
|
226 |
+
"9 @VirginAmerica @virginmedia I'm flying your #f... \n",
|
227 |
+
"10 @VirginAmerica Thanks! \n",
|
228 |
+
"11 @VirginAmerica SFO-PDX schedule is still MIA. \n",
|
229 |
+
"12 @VirginAmerica So excited for my first cross c... \n",
|
230 |
+
"13 @VirginAmerica I flew from NYC to SFO last we... \n",
|
231 |
+
"14 I ❤️ flying @VirginAmerica. ☺️👍 \n",
|
232 |
+
"15 @VirginAmerica you know what would be amazingl... \n",
|
233 |
+
"16 @VirginAmerica why are your first fares in May... \n",
|
234 |
+
"17 @VirginAmerica I love this graphic. http://t.c... \n",
|
235 |
+
"18 @VirginAmerica I love the hipster innovation. ... \n",
|
236 |
+
"19 @VirginAmerica you guys messed up my seating..... "
|
237 |
+
]
|
238 |
+
},
|
239 |
+
"execution_count": 3,
|
240 |
+
"metadata": {},
|
241 |
+
"output_type": "execute_result"
|
242 |
+
}
|
243 |
+
],
|
244 |
+
"source": [
|
245 |
+
"df = pd.read_csv(\"airline_sentiment_analysis.csv\")\n",
|
246 |
+
"df.head(20)\n"
|
247 |
+
]
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"cell_type": "code",
|
251 |
+
"execution_count": 4,
|
252 |
+
"metadata": {
|
253 |
+
"colab": {
|
254 |
+
"base_uri": "https://localhost:8080/",
|
255 |
+
"height": 676
|
256 |
+
},
|
257 |
+
"id": "Jbl-wjpWm_pG",
|
258 |
+
"outputId": "0bf3597e-5645-4c37-a993-dc3c3eb57db4"
|
259 |
+
},
|
260 |
+
"outputs": [
|
261 |
+
{
|
262 |
+
"data": {
|
263 |
+
"text/html": [
|
264 |
+
"<div>\n",
|
265 |
+
"<style scoped>\n",
|
266 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
267 |
+
" vertical-align: middle;\n",
|
268 |
+
" }\n",
|
269 |
+
"\n",
|
270 |
+
" .dataframe tbody tr th {\n",
|
271 |
+
" vertical-align: top;\n",
|
272 |
+
" }\n",
|
273 |
+
"\n",
|
274 |
+
" .dataframe thead th {\n",
|
275 |
+
" text-align: right;\n",
|
276 |
+
" }\n",
|
277 |
+
"</style>\n",
|
278 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
279 |
+
" <thead>\n",
|
280 |
+
" <tr style=\"text-align: right;\">\n",
|
281 |
+
" <th></th>\n",
|
282 |
+
" <th>Unnamed: 0</th>\n",
|
283 |
+
" <th>airline_sentiment</th>\n",
|
284 |
+
" <th>text</th>\n",
|
285 |
+
" </tr>\n",
|
286 |
+
" </thead>\n",
|
287 |
+
" <tbody>\n",
|
288 |
+
" <tr>\n",
|
289 |
+
" <th>0</th>\n",
|
290 |
+
" <td>1</td>\n",
|
291 |
+
" <td>1</td>\n",
|
292 |
+
" <td>@VirginAmerica plus you've added commercials t...</td>\n",
|
293 |
+
" </tr>\n",
|
294 |
+
" <tr>\n",
|
295 |
+
" <th>1</th>\n",
|
296 |
+
" <td>3</td>\n",
|
297 |
+
" <td>0</td>\n",
|
298 |
+
" <td>@VirginAmerica it's really aggressive to blast...</td>\n",
|
299 |
+
" </tr>\n",
|
300 |
+
" <tr>\n",
|
301 |
+
" <th>2</th>\n",
|
302 |
+
" <td>4</td>\n",
|
303 |
+
" <td>0</td>\n",
|
304 |
+
" <td>@VirginAmerica and it's a really big bad thing...</td>\n",
|
305 |
+
" </tr>\n",
|
306 |
+
" <tr>\n",
|
307 |
+
" <th>3</th>\n",
|
308 |
+
" <td>5</td>\n",
|
309 |
+
" <td>0</td>\n",
|
310 |
+
" <td>@VirginAmerica seriously would pay $30 a fligh...</td>\n",
|
311 |
+
" </tr>\n",
|
312 |
+
" <tr>\n",
|
313 |
+
" <th>4</th>\n",
|
314 |
+
" <td>6</td>\n",
|
315 |
+
" <td>1</td>\n",
|
316 |
+
" <td>@VirginAmerica yes, nearly every time I fly VX...</td>\n",
|
317 |
+
" </tr>\n",
|
318 |
+
" <tr>\n",
|
319 |
+
" <th>5</th>\n",
|
320 |
+
" <td>8</td>\n",
|
321 |
+
" <td>1</td>\n",
|
322 |
+
" <td>@virginamerica Well, I didn't…but NOW I DO! :-D</td>\n",
|
323 |
+
" </tr>\n",
|
324 |
+
" <tr>\n",
|
325 |
+
" <th>6</th>\n",
|
326 |
+
" <td>9</td>\n",
|
327 |
+
" <td>1</td>\n",
|
328 |
+
" <td>@VirginAmerica it was amazing, and arrived an ...</td>\n",
|
329 |
+
" </tr>\n",
|
330 |
+
" <tr>\n",
|
331 |
+
" <th>7</th>\n",
|
332 |
+
" <td>11</td>\n",
|
333 |
+
" <td>1</td>\n",
|
334 |
+
" <td>@VirginAmerica I &lt;3 pretty graphics. so muc...</td>\n",
|
335 |
+
" </tr>\n",
|
336 |
+
" <tr>\n",
|
337 |
+
" <th>8</th>\n",
|
338 |
+
" <td>12</td>\n",
|
339 |
+
" <td>1</td>\n",
|
340 |
+
" <td>@VirginAmerica This is such a great deal! Alre...</td>\n",
|
341 |
+
" </tr>\n",
|
342 |
+
" <tr>\n",
|
343 |
+
" <th>9</th>\n",
|
344 |
+
" <td>13</td>\n",
|
345 |
+
" <td>1</td>\n",
|
346 |
+
" <td>@VirginAmerica @virginmedia I'm flying your #f...</td>\n",
|
347 |
+
" </tr>\n",
|
348 |
+
" <tr>\n",
|
349 |
+
" <th>10</th>\n",
|
350 |
+
" <td>14</td>\n",
|
351 |
+
" <td>1</td>\n",
|
352 |
+
" <td>@VirginAmerica Thanks!</td>\n",
|
353 |
+
" </tr>\n",
|
354 |
+
" <tr>\n",
|
355 |
+
" <th>11</th>\n",
|
356 |
+
" <td>15</td>\n",
|
357 |
+
" <td>0</td>\n",
|
358 |
+
" <td>@VirginAmerica SFO-PDX schedule is still MIA.</td>\n",
|
359 |
+
" </tr>\n",
|
360 |
+
" <tr>\n",
|
361 |
+
" <th>12</th>\n",
|
362 |
+
" <td>16</td>\n",
|
363 |
+
" <td>1</td>\n",
|
364 |
+
" <td>@VirginAmerica So excited for my first cross c...</td>\n",
|
365 |
+
" </tr>\n",
|
366 |
+
" <tr>\n",
|
367 |
+
" <th>13</th>\n",
|
368 |
+
" <td>17</td>\n",
|
369 |
+
" <td>0</td>\n",
|
370 |
+
" <td>@VirginAmerica I flew from NYC to SFO last we...</td>\n",
|
371 |
+
" </tr>\n",
|
372 |
+
" <tr>\n",
|
373 |
+
" <th>14</th>\n",
|
374 |
+
" <td>18</td>\n",
|
375 |
+
" <td>1</td>\n",
|
376 |
+
" <td>I ❤️ flying @VirginAmerica. ☺️👍</td>\n",
|
377 |
+
" </tr>\n",
|
378 |
+
" <tr>\n",
|
379 |
+
" <th>15</th>\n",
|
380 |
+
" <td>19</td>\n",
|
381 |
+
" <td>1</td>\n",
|
382 |
+
" <td>@VirginAmerica you know what would be amazingl...</td>\n",
|
383 |
+
" </tr>\n",
|
384 |
+
" <tr>\n",
|
385 |
+
" <th>16</th>\n",
|
386 |
+
" <td>20</td>\n",
|
387 |
+
" <td>0</td>\n",
|
388 |
+
" <td>@VirginAmerica why are your first fares in May...</td>\n",
|
389 |
+
" </tr>\n",
|
390 |
+
" <tr>\n",
|
391 |
+
" <th>17</th>\n",
|
392 |
+
" <td>21</td>\n",
|
393 |
+
" <td>1</td>\n",
|
394 |
+
" <td>@VirginAmerica I love this graphic. http://t.c...</td>\n",
|
395 |
+
" </tr>\n",
|
396 |
+
" <tr>\n",
|
397 |
+
" <th>18</th>\n",
|
398 |
+
" <td>22</td>\n",
|
399 |
+
" <td>1</td>\n",
|
400 |
+
" <td>@VirginAmerica I love the hipster innovation. ...</td>\n",
|
401 |
+
" </tr>\n",
|
402 |
+
" <tr>\n",
|
403 |
+
" <th>19</th>\n",
|
404 |
+
" <td>24</td>\n",
|
405 |
+
" <td>0</td>\n",
|
406 |
+
" <td>@VirginAmerica you guys messed up my seating.....</td>\n",
|
407 |
+
" </tr>\n",
|
408 |
+
" </tbody>\n",
|
409 |
+
"</table>\n",
|
410 |
+
"</div>"
|
411 |
+
],
|
412 |
+
"text/plain": [
|
413 |
+
" Unnamed: 0 airline_sentiment \\\n",
|
414 |
+
"0 1 1 \n",
|
415 |
+
"1 3 0 \n",
|
416 |
+
"2 4 0 \n",
|
417 |
+
"3 5 0 \n",
|
418 |
+
"4 6 1 \n",
|
419 |
+
"5 8 1 \n",
|
420 |
+
"6 9 1 \n",
|
421 |
+
"7 11 1 \n",
|
422 |
+
"8 12 1 \n",
|
423 |
+
"9 13 1 \n",
|
424 |
+
"10 14 1 \n",
|
425 |
+
"11 15 0 \n",
|
426 |
+
"12 16 1 \n",
|
427 |
+
"13 17 0 \n",
|
428 |
+
"14 18 1 \n",
|
429 |
+
"15 19 1 \n",
|
430 |
+
"16 20 0 \n",
|
431 |
+
"17 21 1 \n",
|
432 |
+
"18 22 1 \n",
|
433 |
+
"19 24 0 \n",
|
434 |
+
"\n",
|
435 |
+
" text \n",
|
436 |
+
"0 @VirginAmerica plus you've added commercials t... \n",
|
437 |
+
"1 @VirginAmerica it's really aggressive to blast... \n",
|
438 |
+
"2 @VirginAmerica and it's a really big bad thing... \n",
|
439 |
+
"3 @VirginAmerica seriously would pay $30 a fligh... \n",
|
440 |
+
"4 @VirginAmerica yes, nearly every time I fly VX... \n",
|
441 |
+
"5 @virginamerica Well, I didn't…but NOW I DO! :-D \n",
|
442 |
+
"6 @VirginAmerica it was amazing, and arrived an ... \n",
|
443 |
+
"7 @VirginAmerica I <3 pretty graphics. so muc... \n",
|
444 |
+
"8 @VirginAmerica This is such a great deal! Alre... \n",
|
445 |
+
"9 @VirginAmerica @virginmedia I'm flying your #f... \n",
|
446 |
+
"10 @VirginAmerica Thanks! \n",
|
447 |
+
"11 @VirginAmerica SFO-PDX schedule is still MIA. \n",
|
448 |
+
"12 @VirginAmerica So excited for my first cross c... \n",
|
449 |
+
"13 @VirginAmerica I flew from NYC to SFO last we... \n",
|
450 |
+
"14 I ❤️ flying @VirginAmerica. ☺️👍 \n",
|
451 |
+
"15 @VirginAmerica you know what would be amazingl... \n",
|
452 |
+
"16 @VirginAmerica why are your first fares in May... \n",
|
453 |
+
"17 @VirginAmerica I love this graphic. http://t.c... \n",
|
454 |
+
"18 @VirginAmerica I love the hipster innovation. ... \n",
|
455 |
+
"19 @VirginAmerica you guys messed up my seating..... "
|
456 |
+
]
|
457 |
+
},
|
458 |
+
"execution_count": 4,
|
459 |
+
"metadata": {},
|
460 |
+
"output_type": "execute_result"
|
461 |
+
}
|
462 |
+
],
|
463 |
+
"source": [
|
464 |
+
"for label in df['airline_sentiment']:\n",
|
465 |
+
" if label == 'positive':\n",
|
466 |
+
" df['airline_sentiment'].replace(label, 1, inplace=True)\n",
|
467 |
+
" elif label == 'negative':\n",
|
468 |
+
" df['airline_sentiment'].replace(label, 0, inplace=True)\n",
|
469 |
+
"df.head(20)"
|
470 |
+
]
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"cell_type": "code",
|
474 |
+
"execution_count": 5,
|
475 |
+
"metadata": {
|
476 |
+
"colab": {
|
477 |
+
"base_uri": "https://localhost:8080/",
|
478 |
+
"height": 676
|
479 |
+
},
|
480 |
+
"id": "ApZHkGw2m_pG",
|
481 |
+
"outputId": "3b89a43e-9523-42be-d646-679858136abc"
|
482 |
+
},
|
483 |
+
"outputs": [
|
484 |
+
{
|
485 |
+
"data": {
|
486 |
+
"text/html": [
|
487 |
+
"<div>\n",
|
488 |
+
"<style scoped>\n",
|
489 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
490 |
+
" vertical-align: middle;\n",
|
491 |
+
" }\n",
|
492 |
+
"\n",
|
493 |
+
" .dataframe tbody tr th {\n",
|
494 |
+
" vertical-align: top;\n",
|
495 |
+
" }\n",
|
496 |
+
"\n",
|
497 |
+
" .dataframe thead th {\n",
|
498 |
+
" text-align: right;\n",
|
499 |
+
" }\n",
|
500 |
+
"</style>\n",
|
501 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
502 |
+
" <thead>\n",
|
503 |
+
" <tr style=\"text-align: right;\">\n",
|
504 |
+
" <th></th>\n",
|
505 |
+
" <th>Unnamed: 0</th>\n",
|
506 |
+
" <th>airline_sentiment</th>\n",
|
507 |
+
" <th>text</th>\n",
|
508 |
+
" </tr>\n",
|
509 |
+
" </thead>\n",
|
510 |
+
" <tbody>\n",
|
511 |
+
" <tr>\n",
|
512 |
+
" <th>0</th>\n",
|
513 |
+
" <td>1</td>\n",
|
514 |
+
" <td>1</td>\n",
|
515 |
+
" <td>plus you've added commercials to the experien...</td>\n",
|
516 |
+
" </tr>\n",
|
517 |
+
" <tr>\n",
|
518 |
+
" <th>1</th>\n",
|
519 |
+
" <td>3</td>\n",
|
520 |
+
" <td>0</td>\n",
|
521 |
+
" <td>it's really aggressive to blast obnoxious en...</td>\n",
|
522 |
+
" </tr>\n",
|
523 |
+
" <tr>\n",
|
524 |
+
" <th>2</th>\n",
|
525 |
+
" <td>4</td>\n",
|
526 |
+
" <td>0</td>\n",
|
527 |
+
" <td>and it's a really big bad thing about it</td>\n",
|
528 |
+
" </tr>\n",
|
529 |
+
" <tr>\n",
|
530 |
+
" <th>3</th>\n",
|
531 |
+
" <td>5</td>\n",
|
532 |
+
" <td>0</td>\n",
|
533 |
+
" <td>seriously would pay a flight for seats th...</td>\n",
|
534 |
+
" </tr>\n",
|
535 |
+
" <tr>\n",
|
536 |
+
" <th>4</th>\n",
|
537 |
+
" <td>6</td>\n",
|
538 |
+
" <td>1</td>\n",
|
539 |
+
" <td>yes nearly every time I fly VX this ear wor...</td>\n",
|
540 |
+
" </tr>\n",
|
541 |
+
" <tr>\n",
|
542 |
+
" <th>5</th>\n",
|
543 |
+
" <td>8</td>\n",
|
544 |
+
" <td>1</td>\n",
|
545 |
+
" <td>Well I didn't but NOW I DO! D</td>\n",
|
546 |
+
" </tr>\n",
|
547 |
+
" <tr>\n",
|
548 |
+
" <th>6</th>\n",
|
549 |
+
" <td>9</td>\n",
|
550 |
+
" <td>1</td>\n",
|
551 |
+
" <td>it was amazing and arrived an hour early. Yo...</td>\n",
|
552 |
+
" </tr>\n",
|
553 |
+
" <tr>\n",
|
554 |
+
" <th>7</th>\n",
|
555 |
+
" <td>11</td>\n",
|
556 |
+
" <td>1</td>\n",
|
557 |
+
" <td>I lt pretty graphics. so much better than ...</td>\n",
|
558 |
+
" </tr>\n",
|
559 |
+
" <tr>\n",
|
560 |
+
" <th>8</th>\n",
|
561 |
+
" <td>12</td>\n",
|
562 |
+
" <td>1</td>\n",
|
563 |
+
" <td>This is such a great deal! Already thinking a...</td>\n",
|
564 |
+
" </tr>\n",
|
565 |
+
" <tr>\n",
|
566 |
+
" <th>9</th>\n",
|
567 |
+
" <td>13</td>\n",
|
568 |
+
" <td>1</td>\n",
|
569 |
+
" <td>I'm flying your fabulous Seductive skies aga...</td>\n",
|
570 |
+
" </tr>\n",
|
571 |
+
" <tr>\n",
|
572 |
+
" <th>10</th>\n",
|
573 |
+
" <td>14</td>\n",
|
574 |
+
" <td>1</td>\n",
|
575 |
+
" <td>Thanks!</td>\n",
|
576 |
+
" </tr>\n",
|
577 |
+
" <tr>\n",
|
578 |
+
" <th>11</th>\n",
|
579 |
+
" <td>15</td>\n",
|
580 |
+
" <td>0</td>\n",
|
581 |
+
" <td>SFO PDX schedule is still MIA.</td>\n",
|
582 |
+
" </tr>\n",
|
583 |
+
" <tr>\n",
|
584 |
+
" <th>12</th>\n",
|
585 |
+
" <td>16</td>\n",
|
586 |
+
" <td>1</td>\n",
|
587 |
+
" <td>So excited for my first cross country flight ...</td>\n",
|
588 |
+
" </tr>\n",
|
589 |
+
" <tr>\n",
|
590 |
+
" <th>13</th>\n",
|
591 |
+
" <td>17</td>\n",
|
592 |
+
" <td>0</td>\n",
|
593 |
+
" <td>I flew from NYC to SFO last week and couldn't...</td>\n",
|
594 |
+
" </tr>\n",
|
595 |
+
" <tr>\n",
|
596 |
+
" <th>14</th>\n",
|
597 |
+
" <td>18</td>\n",
|
598 |
+
" <td>1</td>\n",
|
599 |
+
" <td>I red heart flying . smiling face thumbs up</td>\n",
|
600 |
+
" </tr>\n",
|
601 |
+
" <tr>\n",
|
602 |
+
" <th>15</th>\n",
|
603 |
+
" <td>19</td>\n",
|
604 |
+
" <td>1</td>\n",
|
605 |
+
" <td>you know what would be amazingly awesome? BOS...</td>\n",
|
606 |
+
" </tr>\n",
|
607 |
+
" <tr>\n",
|
608 |
+
" <th>16</th>\n",
|
609 |
+
" <td>20</td>\n",
|
610 |
+
" <td>0</td>\n",
|
611 |
+
" <td>why are your first fares in May over three ti...</td>\n",
|
612 |
+
" </tr>\n",
|
613 |
+
" <tr>\n",
|
614 |
+
" <th>17</th>\n",
|
615 |
+
" <td>21</td>\n",
|
616 |
+
" <td>1</td>\n",
|
617 |
+
" <td>I love this graphic. http t.co UT GrRwAaA</td>\n",
|
618 |
+
" </tr>\n",
|
619 |
+
" <tr>\n",
|
620 |
+
" <th>18</th>\n",
|
621 |
+
" <td>22</td>\n",
|
622 |
+
" <td>1</td>\n",
|
623 |
+
" <td>I love the hipster innovation. You are a feel...</td>\n",
|
624 |
+
" </tr>\n",
|
625 |
+
" <tr>\n",
|
626 |
+
" <th>19</th>\n",
|
627 |
+
" <td>24</td>\n",
|
628 |
+
" <td>0</td>\n",
|
629 |
+
" <td>you guys messed up my seating.. I reserved se...</td>\n",
|
630 |
+
" </tr>\n",
|
631 |
+
" </tbody>\n",
|
632 |
+
"</table>\n",
|
633 |
+
"</div>"
|
634 |
+
],
|
635 |
+
"text/plain": [
|
636 |
+
" Unnamed: 0 airline_sentiment \\\n",
|
637 |
+
"0 1 1 \n",
|
638 |
+
"1 3 0 \n",
|
639 |
+
"2 4 0 \n",
|
640 |
+
"3 5 0 \n",
|
641 |
+
"4 6 1 \n",
|
642 |
+
"5 8 1 \n",
|
643 |
+
"6 9 1 \n",
|
644 |
+
"7 11 1 \n",
|
645 |
+
"8 12 1 \n",
|
646 |
+
"9 13 1 \n",
|
647 |
+
"10 14 1 \n",
|
648 |
+
"11 15 0 \n",
|
649 |
+
"12 16 1 \n",
|
650 |
+
"13 17 0 \n",
|
651 |
+
"14 18 1 \n",
|
652 |
+
"15 19 1 \n",
|
653 |
+
"16 20 0 \n",
|
654 |
+
"17 21 1 \n",
|
655 |
+
"18 22 1 \n",
|
656 |
+
"19 24 0 \n",
|
657 |
+
"\n",
|
658 |
+
" text \n",
|
659 |
+
"0 plus you've added commercials to the experien... \n",
|
660 |
+
"1 it's really aggressive to blast obnoxious en... \n",
|
661 |
+
"2 and it's a really big bad thing about it \n",
|
662 |
+
"3 seriously would pay a flight for seats th... \n",
|
663 |
+
"4 yes nearly every time I fly VX this ear wor... \n",
|
664 |
+
"5 Well I didn't but NOW I DO! D \n",
|
665 |
+
"6 it was amazing and arrived an hour early. Yo... \n",
|
666 |
+
"7 I lt pretty graphics. so much better than ... \n",
|
667 |
+
"8 This is such a great deal! Already thinking a... \n",
|
668 |
+
"9 I'm flying your fabulous Seductive skies aga... \n",
|
669 |
+
"10 Thanks! \n",
|
670 |
+
"11 SFO PDX schedule is still MIA. \n",
|
671 |
+
"12 So excited for my first cross country flight ... \n",
|
672 |
+
"13 I flew from NYC to SFO last week and couldn't... \n",
|
673 |
+
"14 I red heart flying . smiling face thumbs up \n",
|
674 |
+
"15 you know what would be amazingly awesome? BOS... \n",
|
675 |
+
"16 why are your first fares in May over three ti... \n",
|
676 |
+
"17 I love this graphic. http t.co UT GrRwAaA \n",
|
677 |
+
"18 I love the hipster innovation. You are a feel... \n",
|
678 |
+
"19 you guys messed up my seating.. I reserved se... "
|
679 |
+
]
|
680 |
+
},
|
681 |
+
"execution_count": 5,
|
682 |
+
"metadata": {},
|
683 |
+
"output_type": "execute_result"
|
684 |
+
}
|
685 |
+
],
|
686 |
+
"source": [
|
687 |
+
"# remove mentions, hashtags, links, and special characters\n",
|
688 |
+
"# replace emoji with text\n",
|
689 |
+
"import emoji\n",
|
690 |
+
"for i,r in df.iterrows():\n",
|
691 |
+
" \n",
|
692 |
+
" df.loc[i,\"text\"] = emoji.demojize(df.loc[i,\"text\"])\n",
|
693 |
+
" df.loc[i,\"text\"] = df.loc[i,\"text\"].replace(\":\",\" \")\n",
|
694 |
+
" df.loc[i,\"text\"] = ' '.join(df.loc[i,\"text\"].split())\n",
|
695 |
+
"\n",
|
696 |
+
"df['text'] = df['text'].str.replace(\"@[A-Za-z0-9]+\", \"\",regex=True)\n",
|
697 |
+
"df['text'] = df['text'].str.replace(\"#\", \"\",regex=True)\n",
|
698 |
+
"df['text'] = df['text'].str.replace(\"https?://[A-Za-z0-9./]+\", \"\",regex=True)\n",
|
699 |
+
"df['text'] = df['text'].str.replace(\"[^a-zA-Z.!?']\", \" \",regex=True)\n",
|
700 |
+
"\n",
|
701 |
+
"\n",
|
702 |
+
"df.head(20)"
|
703 |
+
]
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"cell_type": "code",
|
707 |
+
"execution_count": 8,
|
708 |
+
"metadata": {
|
709 |
+
"id": "MrynUQ9Xm_pG"
|
710 |
+
},
|
711 |
+
"outputs": [],
|
712 |
+
"source": [
|
713 |
+
"# split the data into train and test\n",
|
714 |
+
"from sklearn.model_selection import train_test_split\n",
|
715 |
+
"\n",
|
716 |
+
"train, test = train_test_split(df, test_size=0.2, random_state=42)\n"
|
717 |
+
]
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"cell_type": "code",
|
721 |
+
"execution_count": 9,
|
722 |
+
"metadata": {
|
723 |
+
"colab": {
|
724 |
+
"base_uri": "https://localhost:8080/"
|
725 |
+
},
|
726 |
+
"id": "MambfTNXm_pG",
|
727 |
+
"outputId": "f0e11223-8e74-445a-8cdc-cc8492f26b14"
|
728 |
+
},
|
729 |
+
"outputs": [
|
730 |
+
{
|
731 |
+
"name": "stderr",
|
732 |
+
"output_type": "stream",
|
733 |
+
"text": [
|
734 |
+
"d:\\sentiment_analysis\\venv\\lib\\site-packages\\tqdm\\auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
735 |
+
" from .autonotebook import tqdm as notebook_tqdm\n",
|
736 |
+
"All model checkpoint layers were used when initializing TFBertForSequenceClassification.\n",
|
737 |
+
"\n",
|
738 |
+
"Some layers of TFBertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier']\n",
|
739 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
740 |
+
]
|
741 |
+
}
|
742 |
+
],
|
743 |
+
"source": [
|
744 |
+
"from transformers import BertTokenizer, TFBertForSequenceClassification\n",
|
745 |
+
"from transformers import InputExample, InputFeatures\n",
|
746 |
+
"import tensorflow as tf\n",
|
747 |
+
"\n",
|
748 |
+
"model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased')\n",
|
749 |
+
"tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')"
|
750 |
+
]
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"cell_type": "code",
|
754 |
+
"execution_count": 10,
|
755 |
+
"metadata": {
|
756 |
+
"id": "uxgZ7GsEm_pH"
|
757 |
+
},
|
758 |
+
"outputs": [],
|
759 |
+
"source": [
|
760 |
+
"def convert_data_to_examples(train, test, DATA_COLUMN, LABEL_COLUMN): \n",
|
761 |
+
" train_InputExamples = train.apply(lambda x: InputExample(guid=None, # Globally unique ID for bookkeeping, unused in this case\n",
|
762 |
+
" text_a = x[DATA_COLUMN], \n",
|
763 |
+
" text_b = None,\n",
|
764 |
+
" label = x[LABEL_COLUMN]), axis = 1)\n",
|
765 |
+
"\n",
|
766 |
+
" validation_InputExamples = test.apply(lambda x: InputExample(guid=None, # Globally unique ID for bookkeeping, unused in this case\n",
|
767 |
+
" text_a = x[DATA_COLUMN], \n",
|
768 |
+
" text_b = None,\n",
|
769 |
+
" label = x[LABEL_COLUMN]), axis = 1)\n",
|
770 |
+
" \n",
|
771 |
+
" return train_InputExamples, validation_InputExamples\n",
|
772 |
+
"\n",
|
773 |
+
" train_InputExamples, validation_InputExamples = convert_data_to_examples(train, \n",
|
774 |
+
" test, \n",
|
775 |
+
" 'DATA_COLUMN', \n",
|
776 |
+
" 'LABEL_COLUMN')\n",
|
777 |
+
" \n",
|
778 |
+
"def convert_examples_to_tf_dataset(examples, tokenizer, max_length=128):\n",
|
779 |
+
" features = [] # -> will hold InputFeatures to be converted later\n",
|
780 |
+
"\n",
|
781 |
+
" for e in examples:\n",
|
782 |
+
" # Documentation is really strong for this method, so please take a look at it\n",
|
783 |
+
" input_dict = tokenizer.encode_plus(\n",
|
784 |
+
" e.text_a,\n",
|
785 |
+
" add_special_tokens=True,\n",
|
786 |
+
" max_length=max_length, # truncates if len(s) > max_length\n",
|
787 |
+
" return_token_type_ids=True,\n",
|
788 |
+
" return_attention_mask=True,\n",
|
789 |
+
" pad_to_max_length=True, # pads to the right by default # CHECK THIS for pad_to_max_length\n",
|
790 |
+
" truncation=True\n",
|
791 |
+
" )\n",
|
792 |
+
"\n",
|
793 |
+
" input_ids, token_type_ids, attention_mask = (input_dict[\"input_ids\"],\n",
|
794 |
+
" input_dict[\"token_type_ids\"], input_dict['attention_mask'])\n",
|
795 |
+
"\n",
|
796 |
+
" features.append(\n",
|
797 |
+
" InputFeatures(\n",
|
798 |
+
" input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, label=e.label\n",
|
799 |
+
" )\n",
|
800 |
+
" )\n",
|
801 |
+
"\n",
|
802 |
+
" def gen():\n",
|
803 |
+
" for f in features:\n",
|
804 |
+
" yield (\n",
|
805 |
+
" {\n",
|
806 |
+
" \"input_ids\": f.input_ids,\n",
|
807 |
+
" \"attention_mask\": f.attention_mask,\n",
|
808 |
+
" \"token_type_ids\": f.token_type_ids,\n",
|
809 |
+
" },\n",
|
810 |
+
" f.label,\n",
|
811 |
+
" )\n",
|
812 |
+
"\n",
|
813 |
+
" return tf.data.Dataset.from_generator(\n",
|
814 |
+
" gen,\n",
|
815 |
+
" ({\"input_ids\": tf.int32, \"attention_mask\": tf.int32, \"token_type_ids\": tf.int32}, tf.int64),\n",
|
816 |
+
" (\n",
|
817 |
+
" {\n",
|
818 |
+
" \"input_ids\": tf.TensorShape([None]),\n",
|
819 |
+
" \"attention_mask\": tf.TensorShape([None]),\n",
|
820 |
+
" \"token_type_ids\": tf.TensorShape([None]),\n",
|
821 |
+
" },\n",
|
822 |
+
" tf.TensorShape([]),\n",
|
823 |
+
" ),\n",
|
824 |
+
" )\n"
|
825 |
+
]
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"cell_type": "code",
|
829 |
+
"execution_count": 11,
|
830 |
+
"metadata": {
|
831 |
+
"colab": {
|
832 |
+
"base_uri": "https://localhost:8080/"
|
833 |
+
},
|
834 |
+
"id": "tPsHpWhJm_pH",
|
835 |
+
"outputId": "a9f7b2b8-d0bb-474b-d91a-25f0c8a40905"
|
836 |
+
},
|
837 |
+
"outputs": [
|
838 |
+
{
|
839 |
+
"name": "stderr",
|
840 |
+
"output_type": "stream",
|
841 |
+
"text": [
|
842 |
+
"d:\\sentiment_analysis\\venv\\lib\\site-packages\\transformers\\tokenization_utils_base.py:2336: FutureWarning: The `pad_to_max_length` argument is deprecated and will be removed in a future version, use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or use `padding='max_length'` to pad to a max length. In this case, you can give a specific length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the maximal input size of the model (e.g. 512 for Bert).\n",
|
843 |
+
" warnings.warn(\n"
|
844 |
+
]
|
845 |
+
}
|
846 |
+
],
|
847 |
+
"source": [
|
848 |
+
"DATA_COLUMN = 'text'\n",
|
849 |
+
"LABEL_COLUMN = 'airline_sentiment'\n",
|
850 |
+
"\n",
|
851 |
+
"\n",
|
852 |
+
"train_InputExamples, validation_InputExamples = convert_data_to_examples(train, test, DATA_COLUMN, LABEL_COLUMN)\n",
|
853 |
+
"\n",
|
854 |
+
"train_data = convert_examples_to_tf_dataset(list(train_InputExamples), tokenizer)\n",
|
855 |
+
"train_data = train_data.shuffle(100).batch(32).repeat(2)\n",
|
856 |
+
"\n",
|
857 |
+
"validation_data = convert_examples_to_tf_dataset(list(validation_InputExamples), tokenizer)\n",
|
858 |
+
"validation_data = validation_data.batch(32)"
|
859 |
+
]
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"cell_type": "code",
|
863 |
+
"execution_count": 13,
|
864 |
+
"metadata": {
|
865 |
+
"colab": {
|
866 |
+
"base_uri": "https://localhost:8080/"
|
867 |
+
},
|
868 |
+
"id": "GDcgmUOCm_pI",
|
869 |
+
"outputId": "2f262b78-65f4-4cfc-deb3-a51d2b499eab"
|
870 |
+
},
|
871 |
+
"outputs": [
|
872 |
+
{
|
873 |
+
"name": "stdout",
|
874 |
+
"output_type": "stream",
|
875 |
+
"text": [
|
876 |
+
"Epoch 1/2\n",
|
877 |
+
" 4/Unknown - 168s 36s/step - loss: 0.4485 - accuracy: 0.8203"
|
878 |
+
]
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"ename": "KeyboardInterrupt",
|
882 |
+
"evalue": "",
|
883 |
+
"output_type": "error",
|
884 |
+
"traceback": [
|
885 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
886 |
+
"\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
887 |
+
"Cell \u001b[1;32mIn[13], line 5\u001b[0m\n\u001b[0;32m 1\u001b[0m model\u001b[39m.\u001b[39mcompile(optimizer\u001b[39m=\u001b[39mtf\u001b[39m.\u001b[39mkeras\u001b[39m.\u001b[39moptimizers\u001b[39m.\u001b[39mAdam(learning_rate\u001b[39m=\u001b[39m\u001b[39m3e-5\u001b[39m, epsilon\u001b[39m=\u001b[39m\u001b[39m1e-08\u001b[39m, clipnorm\u001b[39m=\u001b[39m\u001b[39m1.0\u001b[39m), \n\u001b[0;32m 2\u001b[0m loss\u001b[39m=\u001b[39mtf\u001b[39m.\u001b[39mkeras\u001b[39m.\u001b[39mlosses\u001b[39m.\u001b[39mSparseCategoricalCrossentropy(from_logits\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m), \n\u001b[0;32m 3\u001b[0m metrics\u001b[39m=\u001b[39m[tf\u001b[39m.\u001b[39mkeras\u001b[39m.\u001b[39mmetrics\u001b[39m.\u001b[39mSparseCategoricalAccuracy(\u001b[39m'\u001b[39m\u001b[39maccuracy\u001b[39m\u001b[39m'\u001b[39m)])\n\u001b[1;32m----> 5\u001b[0m model\u001b[39m.\u001b[39;49mfit(train_data, epochs\u001b[39m=\u001b[39;49m\u001b[39m2\u001b[39;49m, validation_data\u001b[39m=\u001b[39;49mvalidation_data)\n",
|
888 |
+
"File \u001b[1;32md:\\sentiment_analysis\\venv\\lib\\site-packages\\keras\\utils\\traceback_utils.py:65\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 63\u001b[0m filtered_tb \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m 64\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m---> 65\u001b[0m \u001b[39mreturn\u001b[39;00m fn(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[0;32m 66\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m \u001b[39mas\u001b[39;00m e:\n\u001b[0;32m 67\u001b[0m filtered_tb \u001b[39m=\u001b[39m _process_traceback_frames(e\u001b[39m.\u001b[39m__traceback__)\n",
|
889 |
+
"File \u001b[1;32md:\\sentiment_analysis\\venv\\lib\\site-packages\\keras\\engine\\training.py:1564\u001b[0m, in \u001b[0;36mModel.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m 1556\u001b[0m \u001b[39mwith\u001b[39;00m tf\u001b[39m.\u001b[39mprofiler\u001b[39m.\u001b[39mexperimental\u001b[39m.\u001b[39mTrace(\n\u001b[0;32m 1557\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mtrain\u001b[39m\u001b[39m\"\u001b[39m,\n\u001b[0;32m 1558\u001b[0m epoch_num\u001b[39m=\u001b[39mepoch,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1561\u001b[0m _r\u001b[39m=\u001b[39m\u001b[39m1\u001b[39m,\n\u001b[0;32m 1562\u001b[0m ):\n\u001b[0;32m 1563\u001b[0m callbacks\u001b[39m.\u001b[39mon_train_batch_begin(step)\n\u001b[1;32m-> 1564\u001b[0m tmp_logs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mtrain_function(iterator)\n\u001b[0;32m 1565\u001b[0m \u001b[39mif\u001b[39;00m data_handler\u001b[39m.\u001b[39mshould_sync:\n\u001b[0;32m 1566\u001b[0m context\u001b[39m.\u001b[39masync_wait()\n",
|
890 |
+
"File \u001b[1;32md:\\sentiment_analysis\\venv\\lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[39mreturn\u001b[39;00m fn(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[0;32m 151\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m \u001b[39mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[39m=\u001b[39m _process_traceback_frames(e\u001b[39m.\u001b[39m__traceback__)\n",
|
891 |
+
"File \u001b[1;32md:\\sentiment_analysis\\venv\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py:915\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 912\u001b[0m compiler \u001b[39m=\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mxla\u001b[39m\u001b[39m\"\u001b[39m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_jit_compile \u001b[39melse\u001b[39;00m \u001b[39m\"\u001b[39m\u001b[39mnonXla\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m 914\u001b[0m \u001b[39mwith\u001b[39;00m OptionalXlaContext(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_jit_compile):\n\u001b[1;32m--> 915\u001b[0m result \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_call(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwds)\n\u001b[0;32m 917\u001b[0m new_tracing_count \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mexperimental_get_tracing_count()\n\u001b[0;32m 918\u001b[0m without_tracing \u001b[39m=\u001b[39m (tracing_count \u001b[39m==\u001b[39m new_tracing_count)\n",
|
892 |
+
"File \u001b[1;32md:\\sentiment_analysis\\venv\\lib\\site-packages\\tensorflow\\python\\eager\\def_function.py:947\u001b[0m, in \u001b[0;36mFunction._call\u001b[1;34m(self, *args, **kwds)\u001b[0m\n\u001b[0;32m 944\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_lock\u001b[39m.\u001b[39mrelease()\n\u001b[0;32m 945\u001b[0m \u001b[39m# In this case we have created variables on the first call, so we run the\u001b[39;00m\n\u001b[0;32m 946\u001b[0m \u001b[39m# defunned version which is guaranteed to never create variables.\u001b[39;00m\n\u001b[1;32m--> 947\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_stateless_fn(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwds) \u001b[39m# pylint: disable=not-callable\u001b[39;00m\n\u001b[0;32m 948\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_stateful_fn \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m 949\u001b[0m \u001b[39m# Release the lock early so that multiple threads can perform the call\u001b[39;00m\n\u001b[0;32m 950\u001b[0m \u001b[39m# in parallel.\u001b[39;00m\n\u001b[0;32m 951\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_lock\u001b[39m.\u001b[39mrelease()\n",
|
893 |
+
"File \u001b[1;32md:\\sentiment_analysis\\venv\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:2496\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 2493\u001b[0m \u001b[39mwith\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_lock:\n\u001b[0;32m 2494\u001b[0m (graph_function,\n\u001b[0;32m 2495\u001b[0m filtered_flat_args) \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_maybe_define_function(args, kwargs)\n\u001b[1;32m-> 2496\u001b[0m \u001b[39mreturn\u001b[39;00m graph_function\u001b[39m.\u001b[39;49m_call_flat(\n\u001b[0;32m 2497\u001b[0m filtered_flat_args, captured_inputs\u001b[39m=\u001b[39;49mgraph_function\u001b[39m.\u001b[39;49mcaptured_inputs)\n",
|
894 |
+
"File \u001b[1;32md:\\sentiment_analysis\\venv\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:1862\u001b[0m, in \u001b[0;36mConcreteFunction._call_flat\u001b[1;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[0;32m 1858\u001b[0m possible_gradient_type \u001b[39m=\u001b[39m gradients_util\u001b[39m.\u001b[39mPossibleTapeGradientTypes(args)\n\u001b[0;32m 1859\u001b[0m \u001b[39mif\u001b[39;00m (possible_gradient_type \u001b[39m==\u001b[39m gradients_util\u001b[39m.\u001b[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001b[0;32m 1860\u001b[0m \u001b[39mand\u001b[39;00m executing_eagerly):\n\u001b[0;32m 1861\u001b[0m \u001b[39m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[1;32m-> 1862\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_build_call_outputs(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_inference_function\u001b[39m.\u001b[39;49mcall(\n\u001b[0;32m 1863\u001b[0m ctx, args, cancellation_manager\u001b[39m=\u001b[39;49mcancellation_manager))\n\u001b[0;32m 1864\u001b[0m forward_backward \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_select_forward_and_backward_functions(\n\u001b[0;32m 1865\u001b[0m args,\n\u001b[0;32m 1866\u001b[0m possible_gradient_type,\n\u001b[0;32m 1867\u001b[0m executing_eagerly)\n\u001b[0;32m 1868\u001b[0m forward_function, args_with_tangents \u001b[39m=\u001b[39m forward_backward\u001b[39m.\u001b[39mforward()\n",
|
895 |
+
"File \u001b[1;32md:\\sentiment_analysis\\venv\\lib\\site-packages\\tensorflow\\python\\eager\\function.py:499\u001b[0m, in \u001b[0;36m_EagerDefinedFunction.call\u001b[1;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[0;32m 497\u001b[0m \u001b[39mwith\u001b[39;00m _InterpolateFunctionError(\u001b[39mself\u001b[39m):\n\u001b[0;32m 498\u001b[0m \u001b[39mif\u001b[39;00m cancellation_manager \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m--> 499\u001b[0m outputs \u001b[39m=\u001b[39m execute\u001b[39m.\u001b[39;49mexecute(\n\u001b[0;32m 500\u001b[0m \u001b[39mstr\u001b[39;49m(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49msignature\u001b[39m.\u001b[39;49mname),\n\u001b[0;32m 501\u001b[0m num_outputs\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_num_outputs,\n\u001b[0;32m 502\u001b[0m inputs\u001b[39m=\u001b[39;49margs,\n\u001b[0;32m 503\u001b[0m attrs\u001b[39m=\u001b[39;49mattrs,\n\u001b[0;32m 504\u001b[0m ctx\u001b[39m=\u001b[39;49mctx)\n\u001b[0;32m 505\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 506\u001b[0m outputs \u001b[39m=\u001b[39m execute\u001b[39m.\u001b[39mexecute_with_cancellation(\n\u001b[0;32m 507\u001b[0m \u001b[39mstr\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39msignature\u001b[39m.\u001b[39mname),\n\u001b[0;32m 508\u001b[0m num_outputs\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_num_outputs,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 511\u001b[0m ctx\u001b[39m=\u001b[39mctx,\n\u001b[0;32m 512\u001b[0m cancellation_manager\u001b[39m=\u001b[39mcancellation_manager)\n",
|
896 |
+
"File \u001b[1;32md:\\sentiment_analysis\\venv\\lib\\site-packages\\tensorflow\\python\\eager\\execute.py:54\u001b[0m, in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 52\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m 53\u001b[0m ctx\u001b[39m.\u001b[39mensure_initialized()\n\u001b[1;32m---> 54\u001b[0m tensors \u001b[39m=\u001b[39m pywrap_tfe\u001b[39m.\u001b[39;49mTFE_Py_Execute(ctx\u001b[39m.\u001b[39;49m_handle, device_name, op_name,\n\u001b[0;32m 55\u001b[0m inputs, attrs, num_outputs)\n\u001b[0;32m 56\u001b[0m \u001b[39mexcept\u001b[39;00m core\u001b[39m.\u001b[39m_NotOkStatusException \u001b[39mas\u001b[39;00m e:\n\u001b[0;32m 57\u001b[0m \u001b[39mif\u001b[39;00m name \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n",
|
897 |
+
"\u001b[1;31mKeyboardInterrupt\u001b[0m: "
|
898 |
+
]
|
899 |
+
}
|
900 |
+
],
|
901 |
+
"source": [
|
902 |
+
"model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0), \n",
|
903 |
+
" loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), \n",
|
904 |
+
" metrics=[tf.keras.metrics.SparseCategoricalAccuracy('accuracy')])\n",
|
905 |
+
"\n",
|
906 |
+
"model.fit(train_data, epochs=2, validation_data=validation_data)"
|
907 |
+
]
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"cell_type": "code",
|
911 |
+
"execution_count": null,
|
912 |
+
"metadata": {
|
913 |
+
"id": "K3pzOJS8R1dx"
|
914 |
+
},
|
915 |
+
"outputs": [],
|
916 |
+
"source": [
|
917 |
+
"model.save_weights(\"weights.h5\")"
|
918 |
+
]
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"cell_type": "code",
|
922 |
+
"execution_count": null,
|
923 |
+
"metadata": {
|
924 |
+
"colab": {
|
925 |
+
"base_uri": "https://localhost:8080/",
|
926 |
+
"height": 143
|
927 |
+
},
|
928 |
+
"id": "BLcz_yKOr38C",
|
929 |
+
"outputId": "a56245b6-395a-4ff1-aeba-ab30c98cedb1"
|
930 |
+
},
|
931 |
+
"outputs": [
|
932 |
+
{
|
933 |
+
"data": {
|
934 |
+
"text/html": [
|
935 |
+
"\n",
|
936 |
+
" <div id=\"df-cc5f72e8-1526-491c-af16-8e253c1ba29b\">\n",
|
937 |
+
" <div class=\"colab-df-container\">\n",
|
938 |
+
" <div>\n",
|
939 |
+
"<style scoped>\n",
|
940 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
941 |
+
" vertical-align: middle;\n",
|
942 |
+
" }\n",
|
943 |
+
"\n",
|
944 |
+
" .dataframe tbody tr th {\n",
|
945 |
+
" vertical-align: top;\n",
|
946 |
+
" }\n",
|
947 |
+
"\n",
|
948 |
+
" .dataframe thead th {\n",
|
949 |
+
" text-align: right;\n",
|
950 |
+
" }\n",
|
951 |
+
"</style>\n",
|
952 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
953 |
+
" <thead>\n",
|
954 |
+
" <tr style=\"text-align: right;\">\n",
|
955 |
+
" <th></th>\n",
|
956 |
+
" <th>0</th>\n",
|
957 |
+
" </tr>\n",
|
958 |
+
" </thead>\n",
|
959 |
+
" <tbody>\n",
|
960 |
+
" <tr>\n",
|
961 |
+
" <th>0</th>\n",
|
962 |
+
" <td>The flight was great</td>\n",
|
963 |
+
" </tr>\n",
|
964 |
+
" <tr>\n",
|
965 |
+
" <th>1</th>\n",
|
966 |
+
" <td>frowning face</td>\n",
|
967 |
+
" </tr>\n",
|
968 |
+
" <tr>\n",
|
969 |
+
" <th>2</th>\n",
|
970 |
+
" <td>confetti ball it was bad experience</td>\n",
|
971 |
+
" </tr>\n",
|
972 |
+
" </tbody>\n",
|
973 |
+
"</table>\n",
|
974 |
+
"</div>\n",
|
975 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-cc5f72e8-1526-491c-af16-8e253c1ba29b')\"\n",
|
976 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
977 |
+
" style=\"display:none;\">\n",
|
978 |
+
" \n",
|
979 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
980 |
+
" width=\"24px\">\n",
|
981 |
+
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
|
982 |
+
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
|
983 |
+
" </svg>\n",
|
984 |
+
" </button>\n",
|
985 |
+
" \n",
|
986 |
+
" <style>\n",
|
987 |
+
" .colab-df-container {\n",
|
988 |
+
" display:flex;\n",
|
989 |
+
" flex-wrap:wrap;\n",
|
990 |
+
" gap: 12px;\n",
|
991 |
+
" }\n",
|
992 |
+
"\n",
|
993 |
+
" .colab-df-convert {\n",
|
994 |
+
" background-color: #E8F0FE;\n",
|
995 |
+
" border: none;\n",
|
996 |
+
" border-radius: 50%;\n",
|
997 |
+
" cursor: pointer;\n",
|
998 |
+
" display: none;\n",
|
999 |
+
" fill: #1967D2;\n",
|
1000 |
+
" height: 32px;\n",
|
1001 |
+
" padding: 0 0 0 0;\n",
|
1002 |
+
" width: 32px;\n",
|
1003 |
+
" }\n",
|
1004 |
+
"\n",
|
1005 |
+
" .colab-df-convert:hover {\n",
|
1006 |
+
" background-color: #E2EBFA;\n",
|
1007 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
1008 |
+
" fill: #174EA6;\n",
|
1009 |
+
" }\n",
|
1010 |
+
"\n",
|
1011 |
+
" [theme=dark] .colab-df-convert {\n",
|
1012 |
+
" background-color: #3B4455;\n",
|
1013 |
+
" fill: #D2E3FC;\n",
|
1014 |
+
" }\n",
|
1015 |
+
"\n",
|
1016 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
1017 |
+
" background-color: #434B5C;\n",
|
1018 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
1019 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
1020 |
+
" fill: #FFFFFF;\n",
|
1021 |
+
" }\n",
|
1022 |
+
" </style>\n",
|
1023 |
+
"\n",
|
1024 |
+
" <script>\n",
|
1025 |
+
" const buttonEl =\n",
|
1026 |
+
" document.querySelector('#df-cc5f72e8-1526-491c-af16-8e253c1ba29b button.colab-df-convert');\n",
|
1027 |
+
" buttonEl.style.display =\n",
|
1028 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
1029 |
+
"\n",
|
1030 |
+
" async function convertToInteractive(key) {\n",
|
1031 |
+
" const element = document.querySelector('#df-cc5f72e8-1526-491c-af16-8e253c1ba29b');\n",
|
1032 |
+
" const dataTable =\n",
|
1033 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
1034 |
+
" [key], {});\n",
|
1035 |
+
" if (!dataTable) return;\n",
|
1036 |
+
"\n",
|
1037 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
1038 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
1039 |
+
" + ' to learn more about interactive tables.';\n",
|
1040 |
+
" element.innerHTML = '';\n",
|
1041 |
+
" dataTable['output_type'] = 'display_data';\n",
|
1042 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
1043 |
+
" const docLink = document.createElement('div');\n",
|
1044 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
1045 |
+
" element.appendChild(docLink);\n",
|
1046 |
+
" }\n",
|
1047 |
+
" </script>\n",
|
1048 |
+
" </div>\n",
|
1049 |
+
" </div>\n",
|
1050 |
+
" "
|
1051 |
+
],
|
1052 |
+
"text/plain": [
|
1053 |
+
" 0\n",
|
1054 |
+
"0 The flight was great\n",
|
1055 |
+
"1 frowning face\n",
|
1056 |
+
"2 confetti ball it was bad experience"
|
1057 |
+
]
|
1058 |
+
},
|
1059 |
+
"execution_count": 23,
|
1060 |
+
"metadata": {},
|
1061 |
+
"output_type": "execute_result"
|
1062 |
+
}
|
1063 |
+
],
|
1064 |
+
"source": [
|
1065 |
+
"pred_data = [\"@abc The flight was great\", \"@abc ☹️\",\"🎊 it was bad experience\"]\n",
|
1066 |
+
"pred_data = pd.DataFrame(pred_data)\n",
|
1067 |
+
"\n",
|
1068 |
+
"\n",
|
1069 |
+
"for i,r in pred_data.iterrows():\n",
|
1070 |
+
" pred_data.loc[i,0] = emoji.demojize(r[0])\n",
|
1071 |
+
" pred_data.loc[i,0] = r[0].replace(\":\",\" \")\n",
|
1072 |
+
" pred_data.loc[i,0] = ' '.join(r[0].split())\n",
|
1073 |
+
"\n",
|
1074 |
+
"\n",
|
1075 |
+
"pred_data[0] = pred_data[0].str.replace(\"@[A-Za-z0-9]+\", \"\",regex=True)\n",
|
1076 |
+
"pred_data[0] = pred_data[0].str.replace(\"#\", \"\",regex=True)\n",
|
1077 |
+
"pred_data[0] = pred_data[0].str.replace(\"https?://[A-Za-z0-9./]+\", \"\",regex=True)\n",
|
1078 |
+
"pred_data[0] = pred_data[0].str.replace(\"[^a-zA-Z.!?']\", \" \",regex=True)\n",
|
1079 |
+
"\n",
|
1080 |
+
"pred_data.head()\n"
|
1081 |
+
]
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"cell_type": "code",
|
1085 |
+
"execution_count": null,
|
1086 |
+
"metadata": {
|
1087 |
+
"colab": {
|
1088 |
+
"base_uri": "https://localhost:8080/"
|
1089 |
+
},
|
1090 |
+
"id": "lrTfXZzLsKd6",
|
1091 |
+
"outputId": "0f2c6e24-bc62-45a6-bc71-9b6918ab961e"
|
1092 |
+
},
|
1093 |
+
"outputs": [
|
1094 |
+
{
|
1095 |
+
"name": "stdout",
|
1096 |
+
"output_type": "stream",
|
1097 |
+
"text": [
|
1098 |
+
"[' The flight was great', ' frowning face', 'confetti ball it was bad experience']\n",
|
1099 |
+
" The flight was great : \n",
|
1100 |
+
" Positive\n",
|
1101 |
+
" frowning face : \n",
|
1102 |
+
" Negative\n",
|
1103 |
+
"confetti ball it was bad experience : \n",
|
1104 |
+
" Negative\n"
|
1105 |
+
]
|
1106 |
+
}
|
1107 |
+
],
|
1108 |
+
"source": [
|
1109 |
+
"pred_data = pred_data[0].values.tolist()\n",
|
1110 |
+
"print(pred_data)\n",
|
1111 |
+
"tf_batch = tokenizer(pred_data, max_length=128, padding=True, truncation=True, return_tensors='tf')\n",
|
1112 |
+
"tf_outputs = model(tf_batch)\n",
|
1113 |
+
"tf_predictions = tf.nn.softmax(tf_outputs[0], axis=-1)\n",
|
1114 |
+
"labels = ['Negative','Positive']\n",
|
1115 |
+
"label = tf.argmax(tf_predictions, axis=1)\n",
|
1116 |
+
"label = label.numpy()\n",
|
1117 |
+
"for i in range(len(pred_data)):\n",
|
1118 |
+
" print(pred_data[i], \": \\n\", labels[label[i]])"
|
1119 |
+
]
|
1120 |
+
}
|
1121 |
+
],
|
1122 |
+
"metadata": {
|
1123 |
+
"accelerator": "GPU",
|
1124 |
+
"colab": {
|
1125 |
+
"provenance": []
|
1126 |
+
},
|
1127 |
+
"gpuClass": "standard",
|
1128 |
+
"kernelspec": {
|
1129 |
+
"display_name": "venv",
|
1130 |
+
"language": "python",
|
1131 |
+
"name": "python3"
|
1132 |
+
},
|
1133 |
+
"language_info": {
|
1134 |
+
"codemirror_mode": {
|
1135 |
+
"name": "ipython",
|
1136 |
+
"version": 3
|
1137 |
+
},
|
1138 |
+
"file_extension": ".py",
|
1139 |
+
"mimetype": "text/x-python",
|
1140 |
+
"name": "python",
|
1141 |
+
"nbconvert_exporter": "python",
|
1142 |
+
"pygments_lexer": "ipython3",
|
1143 |
+
"version": "3.10.9 (tags/v3.10.9:1dd9be6, Dec 6 2022, 20:01:21) [MSC v.1934 64 bit (AMD64)]"
|
1144 |
+
},
|
1145 |
+
"orig_nbformat": 4,
|
1146 |
+
"vscode": {
|
1147 |
+
"interpreter": {
|
1148 |
+
"hash": "497fb9213e55408ad8b1ca9a37e341ac93888d86a532670599a03e0c8054f45a"
|
1149 |
+
}
|
1150 |
+
}
|
1151 |
+
},
|
1152 |
+
"nbformat": 4,
|
1153 |
+
"nbformat_minor": 0
|
1154 |
+
}
|
weights.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f65c531ac62337f7a5622b09e4bdecfeb6de6975d53cbf063be98f2667458325
|
3 |
+
size 438223128
|