Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +14 -14
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.28 +/- 0.17
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1721856324014142555f38a6b58e6829693b63ae8dadfca75eca3d2c4bdd97e4
|
3 |
+
size 108030
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[ 0.
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,24 +66,24 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[ 0.
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
"use_sde": false,
|
76 |
"sde_sample_freq": -1,
|
77 |
-
"_current_progress_remaining": 0.
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff4622e2430>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff4622e3340>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 69732,
|
45 |
+
"_total_timesteps": 1600000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1679324564262286359,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9T7xPgcSpz+AK6E/wm5ev0KDqT5C7rW+H65wv4wGn7+0BDU/Sb7JPgU8uLybYMM9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5sA5PyJU3D9cPpM/MTeJv1M7Xz7hjsG+6oOFv2h3tr91QYo/lwFAP2OyUr4GWla7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD1PvE+BxKnP4AroT84GA0/YUjsPhOBdz/Cbl6/QoOpPkLutb5i2iW/s36ovz2JZj8frnC/jAafv7QENT+Omi0/ugvJv0B24zxJvsk+BTy4vJtgwz1YlPM/iCjavxk6jT+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.47118345 1.3052377 1.25914 ]\n [-0.86887753 0.33107954 -0.3553334 ]\n [-0.9401569 -1.2423873 0.707103 ]\n [ 0.3940299 -0.02248956 0.0953991 ]]",
|
60 |
+
"desired_goal": "[[ 0.72559965 1.7213175 1.1503406 ]\n [-1.0719968 0.21799974 -0.3780432 ]\n [-1.0430882 -1.425519 1.0801226 ]\n [ 0.75002426 -0.20575862 -0.00327075]]",
|
61 |
+
"observation": "[[ 0.47118345 1.3052377 1.25914 0.5511508 0.4614897 0.96681327]\n [-0.86887753 0.33107954 -0.3553334 -0.6478635 -1.3163666 0.9005316 ]\n [-0.9401569 -1.2423873 0.707103 0.67813957 -1.5706704 0.02776635]\n [ 0.3940299 -0.02248956 0.0953991 1.9029646 -1.7043619 1.1033355 ]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlFHPPXsgBD4nCoc+vuxuvefpNj0X0BY9TSrXPRaeF76K6Pw9xH8Jvi6E0T1Fg0g+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.10122982 0.12903015 0.26374933]\n [-0.05833124 0.04465666 0.03681954]\n [ 0.10506115 -0.14806399 0.12349041]\n [-0.13427645 0.10230289 0.19581325]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
"use_sde": false,
|
76 |
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.956425,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGw3gLZAg+7+UhpRSlIwBbJRLMowBdJRHQGa6g0j1PFh1fZQoaAZoCWgPQwjGMCdok0P4v5SGlFKUaBVLMmgWR0BmtpS9/SYxdX2UKGgGaAloD0MIms3jMJj//L+UhpRSlGgVSzJoFkdAZrKexwAEMnV9lChoBmgJaA9DCALxun7Bbv6/lIaUUpRoFUsyaBZHQGauoEB8x9J1fZQoaAZoCWgPQwgZHCWvzvH7v5SGlFKUaBVLMmgWR0BmyLCgsbvPdX2UKGgGaAloD0MIyNCxg0oc+L+UhpRSlGgVSzJoFkdAZsTIyTINmXV9lChoBmgJaA9DCAWm07oN6vy/lIaUUpRoFUsyaBZHQGbA1F6Rhc91fZQoaAZoCWgPQwiA1ZEjnQH6v5SGlFKUaBVLMmgWR0BmvNZs9B8hdX2UKGgGaAloD0MIGhnkLsLUAcCUhpRSlGgVSzJoFkdAZtc6gdwNsnV9lChoBmgJaA9DCNHpeTcWVALAlIaUUpRoFUsyaBZHQGbTTHsC1Z11fZQoaAZoCWgPQwib5Ef8ivX6v5SGlFKUaBVLMmgWR0Bmz1dLQHAzdX2UKGgGaAloD0MIfJ4/bVSn/b+UhpRSlGgVSzJoFkdAZstZMcp9Z3V9lChoBmgJaA9DCHhBRGraRQDAlIaUUpRoFUsyaBZHQGblikXUH6d1fZQoaAZoCWgPQwhkBFQ4glT9v5SGlFKUaBVLMmgWR0Bm4ZxiobXIdX2UKGgGaAloD0MI1NfzNcslAMCUhpRSlGgVSzJoFkdAZt2oCMglnnV9lChoBmgJaA9DCBHEeTiBKfq/lIaUUpRoFUsyaBZHQGbZqNp/PPd1fZQoaAZoCWgPQwhREhJpG7/8v5SGlFKUaBVLMmgWR0Bm8+k56t1ZdX2UKGgGaAloD0MIfjuJCP9i/L+UhpRSlGgVSzJoFkdAZu/7DVH4GnV9lChoBmgJaA9DCGNeRxyywf6/lIaUUpRoFUsyaBZHQGbsCAtnPE91fZQoaAZoCWgPQwiV7xmJ0Mj8v5SGlFKUaBVLMmgWR0Bm6Ape/pMYdX2UKGgGaAloD0MI3QphNZbw+r+UhpRSlGgVSzJoFkdAZwKAR02ca3V9lChoBmgJaA9DCB5QNuUKL/i/lIaUUpRoFUsyaBZHQGb+nGKhtch1fZQoaAZoCWgPQwg6kPXU6ssAwJSGlFKUaBVLMmgWR0Bm+q4J/oaDdX2UKGgGaAloD0MI6NoX0As3+7+UhpRSlGgVSzJoFkdAZvaz4UN8V3V9lChoBmgJaA9DCEW7Cik/aQDAlIaUUpRoFUsyaBZHQGcRW7OE/Sp1fZQoaAZoCWgPQwhJnYAmwsb4v5SGlFKUaBVLMmgWR0BnDWy9mHxjdX2UKGgGaAloD0MIPkLNkCoKBcCUhpRSlGgVSzJoFkdAZwl3mmtQsXV9lChoBmgJaA9DCKK4401+i/y/lIaUUpRoFUsyaBZHQGcFe8PFvQ51fZQoaAZoCWgPQwj9vRQeNDv+v5SGlFKUaBVLMmgWR0BnIBOFg2IgdX2UKGgGaAloD0MIrFW7JqS1+r+UhpRSlGgVSzJoFkdAZxwtWdVebHV9lChoBmgJaA9DCAlwehfvJwHAlIaUUpRoFUsyaBZHQGcYORT0g8t1fZQoaAZoCWgPQwhzLVqAtpX+v5SGlFKUaBVLMmgWR0BnFDw4KhL5dX2UKGgGaAloD0MInprLDYb6+L+UhpRSlGgVSzJoFkdAZy39DQZ4wHV9lChoBmgJaA9DCEzHnGfsy/u/lIaUUpRoFUsyaBZHQGcqDW9US7J1fZQoaAZoCWgPQwjvrrMh/8z2v5SGlFKUaBVLMmgWR0BnJhas6q82dX2UKGgGaAloD0MIjLlrCfng+7+UhpRSlGgVSzJoFkdAZyIY0l7dBXV9lChoBmgJaA9DCLA73XniOfi/lIaUUpRoFUsyaBZHQGc8zreIl+p1fZQoaAZoCWgPQwjG3/YEie3/v5SGlFKUaBVLMmgWR0BnOOF8G9pRdX2UKGgGaAloD0MIR450Bkae/7+UhpRSlGgVSzJoFkdAZzTrrPdEcHV9lChoBmgJaA9DCCFaK9ocJ/u/lIaUUpRoFUsyaBZHQGcw8tf5ULl1fZQoaAZoCWgPQwgc0qjAyTb3v5SGlFKUaBVLMmgWR0BnSy3solUqdX2UKGgGaAloD0MI2lazzvj++r+UhpRSlGgVSzJoFkdAZ0dAhStNjHV9lChoBmgJaA9DCCeDo+TVefm/lIaUUpRoFUsyaBZHQGdDTKLbYbt1fZQoaAZoCWgPQwhcj8L1KFz7v5SGlFKUaBVLMmgWR0BnP1B4Uvf1dX2UKGgGaAloD0MIFHXmHhJ+/7+UhpRSlGgVSzJoFkdAZ1nZamoBJnV9lChoBmgJaA9DCMueBDbnoPm/lIaUUpRoFUsyaBZHQGdV6hYeT3Z1fZQoaAZoCWgPQwhk6xnCMUv/v5SGlFKUaBVLMmgWR0BnUfTVlPJrdX2UKGgGaAloD0MIN4lBYOXQ+b+UhpRSlGgVSzJoFkdAZ033EAHVw3V9lChoBmgJaA9DCDdQ4J18Ov6/lIaUUpRoFUsyaBZHQGdok9dNWU91fZQoaAZoCWgPQwiD2m/tREn4v5SGlFKUaBVLMmgWR0BnZKUcGTs6dX2UKGgGaAloD0MInnk57L4j+r+UhpRSlGgVSzJoFkdAZ2Cxu89Oh3V9lChoBmgJaA9DCJinc0Up4fi/lIaUUpRoFUsyaBZHQGdctS619fF1fZQoaAZoCWgPQwioyCHi5lT5v5SGlFKUaBVLMmgWR0BndzPGACnxdX2UKGgGaAloD0MIYp6VtOJb+b+UhpRSlGgVSzJoFkdAZ3NIPK+zt3V9lChoBmgJaA9DCFouG53z0/i/lIaUUpRoFUsyaBZHQGdvU7Sy+pR1fZQoaAZoCWgPQwjgK7r1mp77v5SGlFKUaBVLMmgWR0Bna1TrE9+xdX2UKGgGaAloD0MIIa0x6ISQ/L+UhpRSlGgVSzJoFkdAZ4XWwu/UOXV9lChoBmgJaA9DCAzO4O8Xs/a/lIaUUpRoFUsyaBZHQGeB57PY4AF1fZQoaAZoCWgPQwg1f0xr0xj9v5SGlFKUaBVLMmgWR0BnffLPldTpdX2UKGgGaAloD0MInbryWZ6nAcCUhpRSlGgVSzJoFkdAZ3n0HyEtd3V9lChoBmgJaA9DCD8fZcQF4PW/lIaUUpRoFUsyaBZHQGeXsqSX+l11fZQoaAZoCWgPQwgO+WcG8QH5v5SGlFKUaBVLMmgWR0Bnk8yeqaPTdX2UKGgGaAloD0MI6+Bgb2KI97+UhpRSlGgVSzJoFkdAZ4/nied073V9lChoBmgJaA9DCJOsw9FVOv2/lIaUUpRoFUsyaBZHQGeL8SGrS3N1fZQoaAZoCWgPQwj1u7A1Wzn8v5SGlFKUaBVLMmgWR0BnrYHcDbJwdX2UKGgGaAloD0MIdjV5ymo69b+UhpRSlGgVSzJoFkdAZ6mjY7JXAHV9lChoBmgJaA9DCCScFrzo6/u/lIaUUpRoFUsyaBZHQGelt3W4EwF1fZQoaAZoCWgPQwi6FFeVfdf8v5SGlFKUaBVLMmgWR0Bnob/bTMJQdX2UKGgGaAloD0MIo3iVtU1x+L+UhpRSlGgVSzJoFkdAZ8RxQSBbwHV9lChoBmgJaA9DCFW+ZyRCY/2/lIaUUpRoFUsyaBZHQGfArCN0eU91fZQoaAZoCWgPQwjhRsoWSTv4v5SGlFKUaBVLMmgWR0BnvLvJA+pwdX2UKGgGaAloD0MIJ6Q1Bp3Q/b+UhpRSlGgVSzJoFkdAZ7jFXJYDDHV9lChoBmgJaA9DCFJEhlW80f2/lIaUUpRoFUsyaBZHQGfcgRTS9dx1fZQoaAZoCWgPQwjkoe9uZUn5v5SGlFKUaBVLMmgWR0Bn2JxT850bdX2UKGgGaAloD0MIPBOaJJZU/L+UhpRSlGgVSzJoFkdAZ9Sx1PnB+HV9lChoBmgJaA9DCMU4fxMKUfq/lIaUUpRoFUsyaBZHQGfQwwsXizd1fZQoaAZoCWgPQwiKPh9lxEX9v5SGlFKUaBVLMmgWR0Bn9ZKpT/ACdX2UKGgGaAloD0MI0nKgh9q2/b+UhpRSlGgVSzJoFkdAZ/Gxk/bCanV9lChoBmgJaA9DCJBrQ8U4v/e/lIaUUpRoFUsyaBZHQGftx0U47zV1fZQoaAZoCWgPQwhK8fEJ2bn9v5SGlFKUaBVLMmgWR0Bn6d3np0OmdX2UKGgGaAloD0MIDJV/La/c9b+UhpRSlGgVSzJoFkdAaA2KXv6TGHV9lChoBmgJaA9DCLwft18+2fm/lIaUUpRoFUsyaBZHQGgJqK508vF1fZQoaAZoCWgPQwgi/IugMZP4v5SGlFKUaBVLMmgWR0BoBcBZIQOGdX2UKGgGaAloD0MIQxuADYiQ/L+UhpRSlGgVSzJoFkdAaAHIhhYvFnV9lChoBmgJaA9DCCWVKeYgqP+/lIaUUpRoFUsyaBZHQGglnq/ub7V1fZQoaAZoCWgPQwgtsp3vp8b9v5SGlFKUaBVLMmgWR0BoIbq4YrJ9dX2UKGgGaAloD0MI078klSkm9b+UhpRSlGgVSzJoFkdAaB3NHpbD/HV9lChoBmgJaA9DCC5W1GAaRvu/lIaUUpRoFUsyaBZHQGgZ1yvLX+V1fZQoaAZoCWgPQwim7zUEx6X3v5SGlFKUaBVLMmgWR0BoO1A3T/hmdX2UKGgGaAloD0MIX7adtkbE9L+UhpRSlGgVSzJoFkdAaDdjoZAIIHV9lChoBmgJaA9DCA1uawvPi/6/lIaUUpRoFUsyaBZHQGgzbXxvvSd1fZQoaAZoCWgPQwh6ppcYy7T8v5SGlFKUaBVLMmgWR0BoL2/336AOdX2UKGgGaAloD0MIF0m70cc8AcCUhpRSlGgVSzJoFkdAaEmxRl6JInV9lChoBmgJaA9DCBwj2SPUDPy/lIaUUpRoFUsyaBZHQGhFwmE4//x1fZQoaAZoCWgPQwgGvTeGAOD6v5SGlFKUaBVLMmgWR0BoQc9r433pdX2UKGgGaAloD0MIr+sX7IYt+7+UhpRSlGgVSzJoFkdAaD3PxhDw6XV9lChoBmgJaA9DCDHuBtFaMQPAlIaUUpRoFUsyaBZHQGhYNPHktEp1fZQoaAZoCWgPQwh2wHXFjLABwJSGlFKUaBVLMmgWR0BoVFm6GxlhdX2UKGgGaAloD0MIFhVxOsnW/7+UhpRSlGgVSzJoFkdAaFBwQUYbbXV9lChoBmgJaA9DCFs//WfND/2/lIaUUpRoFUsyaBZHQGhMe5WilBR1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 3486,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4ac24b595d763bd58dcf6ee16032a94fb365bb4f6ee9b1e869e2bd56c88db9c
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75dbcfafd7a846c861342094669c38b61bca45e32a28d695a4d391b9095fdb86
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7faa74330d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7faa74332380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 994932, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679318653867049149, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXK12Pt0DoD4uIFU/P3aAv0nYiD8hacm/32MkPuo5h78vWcs/S1QVPZ0Ctj7RQN89lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiH7qviPLiT/S5ZQ/234mvxnXKD9kVbq/4jnVvweIPL+xeYI/6IVmv5gPWj8mrKY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABcrXY+3QOgPi4gVT9On1Q/kLwav2zBND8/doC/SdiIPyFpyb9j5oLAVyJFvyeqqr/fYyQ+6jmHvy9Zyz9YRY+9/0ujPZQ3kD9LVBU9nQK2PtFA3z25BqI/OOwnPu+ODECUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.24089569 0.31252947 0.8325223 ]\n [-1.0036086 1.0691005 -1.5735208 ]\n [ 0.16053723 -1.0564549 1.5886592 ]\n [ 0.03645734 0.3554887 0.10901035]]", "desired_goal": "[[-0.4579966 1.0765117 1.1632636 ]\n [-0.65037316 0.6595321 -1.4557309 ]\n [-1.665829 -0.7364506 1.0193387 ]\n [-0.90048075 0.85180044 0.32553214]]", "observation": "[[ 0.24089569 0.31252947 0.8325223 0.8305558 -0.60443974 0.7060764 ]\n [-1.0036086 1.0691005 -1.5735208 -4.0906234 -0.77005523 -1.3333176 ]\n [ 0.16053723 -1.0564549 1.5886592 -0.06995648 0.07973479 1.1266961 ]\n [ 0.03645734 0.3554887 0.10901035 1.2658302 0.16398704 2.196224 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANQucPReDXrpFGng+ndXAvciFFL5HV1s+OvEjPSXjxD1MKuY85J26vCpZBr6vkVI6lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07619325 -0.00084882 0.24228771]\n [-0.09415743 -0.14504158 0.21420012]\n [ 0.04002497 0.09613637 0.02809634]\n [-0.02278037 -0.13119951 0.00080326]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.005079999999999973, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInN7F+3F7CMCUhpRSlIwBbJRLMowBdJRHQKdS8Ww/xDt1fZQoaAZoCWgPQwhaZaa0/gYQwJSGlFKUaBVLMmgWR0CnUqFvQ4S6dX2UKGgGaAloD0MIsistI/WeD8CUhpRSlGgVSzJoFkdAp1JMS7GvOnV9lChoBmgJaA9DCAH3PH/aCADAlIaUUpRoFUsyaBZHQKdR9sv7FbV1fZQoaAZoCWgPQwg7bY0IxoEOwJSGlFKUaBVLMmgWR0CnVHhvaURndX2UKGgGaAloD0MICAWlaOWeDsCUhpRSlGgVSzJoFkdAp1QotapxWHV9lChoBmgJaA9DCBvaAGxAJAXAlIaUUpRoFUsyaBZHQKdT04ZuQ6p1fZQoaAZoCWgPQwgAdJgvL0ABwJSGlFKUaBVLMmgWR0CnU36gM+eOdX2UKGgGaAloD0MIH/et1okbEsCUhpRSlGgVSzJoFkdAp1YvuXu3MXV9lChoBmgJaA9DCAEW+fVDzAnAlIaUUpRoFUsyaBZHQKdV3/dZaFF1fZQoaAZoCWgPQwgQPpRoyYMOwJSGlFKUaBVLMmgWR0CnVYrVnVXndX2UKGgGaAloD0MIHyv4bYgxCcCUhpRSlGgVSzJoFkdAp1U1n/T9bXV9lChoBmgJaA9DCAJ+jSRB+ATAlIaUUpRoFUsyaBZHQKdX408/2TR1fZQoaAZoCWgPQwhGe7yQDu8HwJSGlFKUaBVLMmgWR0CnV5OGTLW7dX2UKGgGaAloD0MI2/gTlQ0rAcCUhpRSlGgVSzJoFkdAp1c+3KB/Z3V9lChoBmgJaA9DCMy1aAHaFhvAlIaUUpRoFUsyaBZHQKdW6Y+jdpJ1fZQoaAZoCWgPQwjjNa/qrLYZwJSGlFKUaBVLMmgWR0CnWbnaWX1KdX2UKGgGaAloD0MIbxCtFW1OHcCUhpRSlGgVSzJoFkdAp1lqOo5xR3V9lChoBmgJaA9DCOSHSiNm9gvAlIaUUpRoFUsyaBZHQKdZFXCCSRt1fZQoaAZoCWgPQwh0zk9xHLgDwJSGlFKUaBVLMmgWR0CnWMCtq59WdX2UKGgGaAloD0MI8L+V7NgYEMCUhpRSlGgVSzJoFkdAp1s9qFh5PnV9lChoBmgJaA9DCOIGfH4YYf6/lIaUUpRoFUsyaBZHQKda7Qzk6tF1fZQoaAZoCWgPQwhi9rLttEUgwJSGlFKUaBVLMmgWR0CnWpd9c8kldX2UKGgGaAloD0MIXMe44uK4GsCUhpRSlGgVSzJoFkdAp1pB1DBuXXV9lChoBmgJaA9DCHR8tDhjuA/AlIaUUpRoFUsyaBZHQKdcNu1F6Rh1fZQoaAZoCWgPQwj8AKQ2cZIKwJSGlFKUaBVLMmgWR0CnW+bA+IM0dX2UKGgGaAloD0MIl/26053nBcCUhpRSlGgVSzJoFkdAp1uROvdM03V9lChoBmgJaA9DCCP5SiAl9gvAlIaUUpRoFUsyaBZHQKdbOzNUwSJ1fZQoaAZoCWgPQwhxOslWlxMCwJSGlFKUaBVLMmgWR0CnXSWMS9M9dX2UKGgGaAloD0MIGqchqvDnDsCUhpRSlGgVSzJoFkdAp1zU41gpjXV9lChoBmgJaA9DCPPn24KlOh/AlIaUUpRoFUsyaBZHQKdcf1gYxcp1fZQoaAZoCWgPQwiyEYjX9QsDwJSGlFKUaBVLMmgWR0CnXCmTs6aLdX2UKGgGaAloD0MIOEiI8gXtBsCUhpRSlGgVSzJoFkdAp14uuxKQJXV9lChoBmgJaA9DCBIxJZLopRTAlIaUUpRoFUsyaBZHQKdd3lKbrkd1fZQoaAZoCWgPQwhOmgZF8yALwJSGlFKUaBVLMmgWR0CnXYjrZ8KHdX2UKGgGaAloD0MIf73CgvuBHsCUhpRSlGgVSzJoFkdAp10y1eBxxXV9lChoBmgJaA9DCMQJTKd12wHAlIaUUpRoFUsyaBZHQKdfKATZg5R1fZQoaAZoCWgPQwhklGdeDhsPwJSGlFKUaBVLMmgWR0CnXtddE9dNdX2UKGgGaAloD0MIb0ijAic7EsCUhpRSlGgVSzJoFkdAp16BbfP5YnV9lChoBmgJaA9DCBb3H5kOzRvAlIaUUpRoFUsyaBZHQKdeK8IRh+h1fZQoaAZoCWgPQwgS+MPPfwchwJSGlFKUaBVLMmgWR0CnYEgNG3F2dX2UKGgGaAloD0MIRPzDlh5NGsCUhpRSlGgVSzJoFkdAp1/3gDRtxnV9lChoBmgJaA9DCNDVVuwvWxbAlIaUUpRoFUsyaBZHQKdfor9VFQV1fZQoaAZoCWgPQwj68ZcW9RkTwJSGlFKUaBVLMmgWR0CnX0zPrv9cdX2UKGgGaAloD0MI7x6g+3IGEsCUhpRSlGgVSzJoFkdAp2FOQKa5PXV9lChoBmgJaA9DCM6pZACoYhfAlIaUUpRoFUsyaBZHQKdg/eBQN1B1fZQoaAZoCWgPQwiEDrqEQ68CwJSGlFKUaBVLMmgWR0CnYKiV0Lc9dX2UKGgGaAloD0MIraHUXkRrFsCUhpRSlGgVSzJoFkdAp2BS0v4/NnV9lChoBmgJaA9DCMcTQZyH8wzAlIaUUpRoFUsyaBZHQKdiUqzZ6D51fZQoaAZoCWgPQwiKzFzg8sgcwJSGlFKUaBVLMmgWR0CnYgJPqLTAdX2UKGgGaAloD0MI16Avvf0JEMCUhpRSlGgVSzJoFkdAp2Gs7nxJ/XV9lChoBmgJaA9DCAqeQq7Ucx3AlIaUUpRoFUsyaBZHQKdhVy7wrlN1fZQoaAZoCWgPQwiIEi15PE0GwJSGlFKUaBVLMmgWR0CnY5+i8FpxdX2UKGgGaAloD0MI5IOezar/GsCUhpRSlGgVSzJoFkdAp2NQCbMHKXV9lChoBmgJaA9DCCZtqu6RZSDAlIaUUpRoFUsyaBZHQKdi+zGgi/x1fZQoaAZoCWgPQwjO/kC5bR8TwJSGlFKUaBVLMmgWR0CnYqVOsT37dX2UKGgGaAloD0MIEyo4vCCCBcCUhpRSlGgVSzJoFkdAp2SxWV/tpnV9lChoBmgJaA9DCOQPBp57/xHAlIaUUpRoFUsyaBZHQKdkYLXL/0d1fZQoaAZoCWgPQwguAI3SpT8SwJSGlFKUaBVLMmgWR0CnZArIxQBQdX2UKGgGaAloD0MIuYlamlupI8CUhpRSlGgVSzJoFkdAp2O1RLsa9HV9lChoBmgJaA9DCA/vObAcoQvAlIaUUpRoFUsyaBZHQKdlwVi4J/p1fZQoaAZoCWgPQwjQ7/s3L04awJSGlFKUaBVLMmgWR0CnZXEiliz+dX2UKGgGaAloD0MIAd4CCYrPGcCUhpRSlGgVSzJoFkdAp2UbwBo243V9lChoBmgJaA9DCMQGCydp/hfAlIaUUpRoFUsyaBZHQKdkxesxO+J1fZQoaAZoCWgPQwhHIF7XL9gMwJSGlFKUaBVLMmgWR0CnZsUs4DLbdX2UKGgGaAloD0MIEmkbf6JSEcCUhpRSlGgVSzJoFkdAp2Z0nssxwnV9lChoBmgJaA9DCCuJ7IMsCwnAlIaUUpRoFUsyaBZHQKdmHr+Haex1fZQoaAZoCWgPQwjBOLh0zBkJwJSGlFKUaBVLMmgWR0CnZcjgIhQndX2UKGgGaAloD0MIG5yIfm29EcCUhpRSlGgVSzJoFkdAp2iRxo7FKnV9lChoBmgJaA9DCLadtkYEowzAlIaUUpRoFUsyaBZHQKdoQUj9n9N1fZQoaAZoCWgPQwjj4T0HlrMpwJSGlFKUaBVLMmgWR0CnZ+ug6EJ0dX2UKGgGaAloD0MI5YBdTZ4CGcCUhpRSlGgVSzJoFkdAp2eV3EAHV3V9lChoBmgJaA9DCAgcCTTYBBDAlIaUUpRoFUsyaBZHQKdptHJcPe51fZQoaAZoCWgPQwg0D2CRXy8ZwJSGlFKUaBVLMmgWR0CnaWQjMV1wdX2UKGgGaAloD0MI4dHGEWuBJsCUhpRSlGgVSzJoFkdAp2kPJ5mh/XV9lChoBmgJaA9DCMNi1LX2ijjAlIaUUpRoFUsyaBZHQKdouUKRdQh1fZQoaAZoCWgPQwgfZi/bTkMjwJSGlFKUaBVLMmgWR0CnavvQnhKldX2UKGgGaAloD0MIQWFQptEkBMCUhpRSlGgVSzJoFkdAp2qrX8O09nV9lChoBmgJaA9DCLzplh3ijzXAlIaUUpRoFUsyaBZHQKdqVefI0ZZ1fZQoaAZoCWgPQwirI0c6A2s3wJSGlFKUaBVLMmgWR0CnagCXIEKWdX2UKGgGaAloD0MIzVfJx+5iCMCUhpRSlGgVSzJoFkdAp2v5BeHBUXV9lChoBmgJaA9DCG+gwDv5lBPAlIaUUpRoFUsyaBZHQKdrqFmnO0N1fZQoaAZoCWgPQwjw/Q3aq08EwJSGlFKUaBVLMmgWR0Cna1KGDcubdX2UKGgGaAloD0MIaw2l9iJqHsCUhpRSlGgVSzJoFkdAp2r9Bv73wnV9lChoBmgJaA9DCPSkTGpoowvAlIaUUpRoFUsyaBZHQKdtEXaakRB1fZQoaAZoCWgPQwgHflTDfj8QwJSGlFKUaBVLMmgWR0CnbME8ifQKdX2UKGgGaAloD0MI3bWEfNAzEMCUhpRSlGgVSzJoFkdAp2xrs8gZCXV9lChoBmgJaA9DCIYhcvp6vgjAlIaUUpRoFUsyaBZHQKdsFa5f+jx1fZQoaAZoCWgPQwgyrU1je60UwJSGlFKUaBVLMmgWR0Cnbgy2x6fKdX2UKGgGaAloD0MIy/RLxFtHEsCUhpRSlGgVSzJoFkdAp229gMMI/3V9lChoBmgJaA9DCGEZG7rZzxHAlIaUUpRoFUsyaBZHQKdtaNtIkJN1fZQoaAZoCWgPQwhi26LMBkkRwJSGlFKUaBVLMmgWR0CnbROaF23bdX2UKGgGaAloD0MIXFZhM8ClDMCUhpRSlGgVSzJoFkdAp29KWszVMHV9lChoBmgJaA9DCGZOl8XE5gLAlIaUUpRoFUsyaBZHQKdu+nv2GqR1fZQoaAZoCWgPQwhRTUnW4XgWwJSGlFKUaBVLMmgWR0CnbqWUbDMvdX2UKGgGaAloD0MIHuBJC5elEsCUhpRSlGgVSzJoFkdAp25QeYD1XnV9lChoBmgJaA9DCJ+sGK4O8CnAlIaUUpRoFUsyaBZHQKdxTqmCROl1fZQoaAZoCWgPQwhSmWIOgs4JwJSGlFKUaBVLMmgWR0CncP7utwJgdX2UKGgGaAloD0MIKsb5m1C4FcCUhpRSlGgVSzJoFkdAp3CqRlpXZHV9lChoBmgJaA9DCNC52/XSNBfAlIaUUpRoFUsyaBZHQKdwVZRKpUB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 104746, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff4622e2430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff4622e3340>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 69732, "_total_timesteps": 1600000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679324564262286359, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9T7xPgcSpz+AK6E/wm5ev0KDqT5C7rW+H65wv4wGn7+0BDU/Sb7JPgU8uLybYMM9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5sA5PyJU3D9cPpM/MTeJv1M7Xz7hjsG+6oOFv2h3tr91QYo/lwFAP2OyUr4GWla7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD1PvE+BxKnP4AroT84GA0/YUjsPhOBdz/Cbl6/QoOpPkLutb5i2iW/s36ovz2JZj8frnC/jAafv7QENT+Omi0/ugvJv0B24zxJvsk+BTy4vJtgwz1YlPM/iCjavxk6jT+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.47118345 1.3052377 1.25914 ]\n [-0.86887753 0.33107954 -0.3553334 ]\n [-0.9401569 -1.2423873 0.707103 ]\n [ 0.3940299 -0.02248956 0.0953991 ]]", "desired_goal": "[[ 0.72559965 1.7213175 1.1503406 ]\n [-1.0719968 0.21799974 -0.3780432 ]\n [-1.0430882 -1.425519 1.0801226 ]\n [ 0.75002426 -0.20575862 -0.00327075]]", "observation": "[[ 0.47118345 1.3052377 1.25914 0.5511508 0.4614897 0.96681327]\n [-0.86887753 0.33107954 -0.3553334 -0.6478635 -1.3163666 0.9005316 ]\n [-0.9401569 -1.2423873 0.707103 0.67813957 -1.5706704 0.02776635]\n [ 0.3940299 -0.02248956 0.0953991 1.9029646 -1.7043619 1.1033355 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlFHPPXsgBD4nCoc+vuxuvefpNj0X0BY9TSrXPRaeF76K6Pw9xH8Jvi6E0T1Fg0g+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10122982 0.12903015 0.26374933]\n [-0.05833124 0.04465666 0.03681954]\n [ 0.10506115 -0.14806399 0.12349041]\n [-0.13427645 0.10230289 0.19581325]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.956425, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGw3gLZAg+7+UhpRSlIwBbJRLMowBdJRHQGa6g0j1PFh1fZQoaAZoCWgPQwjGMCdok0P4v5SGlFKUaBVLMmgWR0BmtpS9/SYxdX2UKGgGaAloD0MIms3jMJj//L+UhpRSlGgVSzJoFkdAZrKexwAEMnV9lChoBmgJaA9DCALxun7Bbv6/lIaUUpRoFUsyaBZHQGauoEB8x9J1fZQoaAZoCWgPQwgZHCWvzvH7v5SGlFKUaBVLMmgWR0BmyLCgsbvPdX2UKGgGaAloD0MIyNCxg0oc+L+UhpRSlGgVSzJoFkdAZsTIyTINmXV9lChoBmgJaA9DCAWm07oN6vy/lIaUUpRoFUsyaBZHQGbA1F6Rhc91fZQoaAZoCWgPQwiA1ZEjnQH6v5SGlFKUaBVLMmgWR0BmvNZs9B8hdX2UKGgGaAloD0MIGhnkLsLUAcCUhpRSlGgVSzJoFkdAZtc6gdwNsnV9lChoBmgJaA9DCNHpeTcWVALAlIaUUpRoFUsyaBZHQGbTTHsC1Z11fZQoaAZoCWgPQwib5Ef8ivX6v5SGlFKUaBVLMmgWR0Bmz1dLQHAzdX2UKGgGaAloD0MIfJ4/bVSn/b+UhpRSlGgVSzJoFkdAZstZMcp9Z3V9lChoBmgJaA9DCHhBRGraRQDAlIaUUpRoFUsyaBZHQGblikXUH6d1fZQoaAZoCWgPQwhkBFQ4glT9v5SGlFKUaBVLMmgWR0Bm4ZxiobXIdX2UKGgGaAloD0MI1NfzNcslAMCUhpRSlGgVSzJoFkdAZt2oCMglnnV9lChoBmgJaA9DCBHEeTiBKfq/lIaUUpRoFUsyaBZHQGbZqNp/PPd1fZQoaAZoCWgPQwhREhJpG7/8v5SGlFKUaBVLMmgWR0Bm8+k56t1ZdX2UKGgGaAloD0MIfjuJCP9i/L+UhpRSlGgVSzJoFkdAZu/7DVH4GnV9lChoBmgJaA9DCGNeRxyywf6/lIaUUpRoFUsyaBZHQGbsCAtnPE91fZQoaAZoCWgPQwiV7xmJ0Mj8v5SGlFKUaBVLMmgWR0Bm6Ape/pMYdX2UKGgGaAloD0MI3QphNZbw+r+UhpRSlGgVSzJoFkdAZwKAR02ca3V9lChoBmgJaA9DCB5QNuUKL/i/lIaUUpRoFUsyaBZHQGb+nGKhtch1fZQoaAZoCWgPQwg6kPXU6ssAwJSGlFKUaBVLMmgWR0Bm+q4J/oaDdX2UKGgGaAloD0MI6NoX0As3+7+UhpRSlGgVSzJoFkdAZvaz4UN8V3V9lChoBmgJaA9DCEW7Cik/aQDAlIaUUpRoFUsyaBZHQGcRW7OE/Sp1fZQoaAZoCWgPQwhJnYAmwsb4v5SGlFKUaBVLMmgWR0BnDWy9mHxjdX2UKGgGaAloD0MIPkLNkCoKBcCUhpRSlGgVSzJoFkdAZwl3mmtQsXV9lChoBmgJaA9DCKK4401+i/y/lIaUUpRoFUsyaBZHQGcFe8PFvQ51fZQoaAZoCWgPQwj9vRQeNDv+v5SGlFKUaBVLMmgWR0BnIBOFg2IgdX2UKGgGaAloD0MIrFW7JqS1+r+UhpRSlGgVSzJoFkdAZxwtWdVebHV9lChoBmgJaA9DCAlwehfvJwHAlIaUUpRoFUsyaBZHQGcYORT0g8t1fZQoaAZoCWgPQwhzLVqAtpX+v5SGlFKUaBVLMmgWR0BnFDw4KhL5dX2UKGgGaAloD0MInprLDYb6+L+UhpRSlGgVSzJoFkdAZy39DQZ4wHV9lChoBmgJaA9DCEzHnGfsy/u/lIaUUpRoFUsyaBZHQGcqDW9US7J1fZQoaAZoCWgPQwjvrrMh/8z2v5SGlFKUaBVLMmgWR0BnJhas6q82dX2UKGgGaAloD0MIjLlrCfng+7+UhpRSlGgVSzJoFkdAZyIY0l7dBXV9lChoBmgJaA9DCLA73XniOfi/lIaUUpRoFUsyaBZHQGc8zreIl+p1fZQoaAZoCWgPQwjG3/YEie3/v5SGlFKUaBVLMmgWR0BnOOF8G9pRdX2UKGgGaAloD0MIR450Bkae/7+UhpRSlGgVSzJoFkdAZzTrrPdEcHV9lChoBmgJaA9DCCFaK9ocJ/u/lIaUUpRoFUsyaBZHQGcw8tf5ULl1fZQoaAZoCWgPQwgc0qjAyTb3v5SGlFKUaBVLMmgWR0BnSy3solUqdX2UKGgGaAloD0MI2lazzvj++r+UhpRSlGgVSzJoFkdAZ0dAhStNjHV9lChoBmgJaA9DCCeDo+TVefm/lIaUUpRoFUsyaBZHQGdDTKLbYbt1fZQoaAZoCWgPQwhcj8L1KFz7v5SGlFKUaBVLMmgWR0BnP1B4Uvf1dX2UKGgGaAloD0MIFHXmHhJ+/7+UhpRSlGgVSzJoFkdAZ1nZamoBJnV9lChoBmgJaA9DCMueBDbnoPm/lIaUUpRoFUsyaBZHQGdV6hYeT3Z1fZQoaAZoCWgPQwhk6xnCMUv/v5SGlFKUaBVLMmgWR0BnUfTVlPJrdX2UKGgGaAloD0MIN4lBYOXQ+b+UhpRSlGgVSzJoFkdAZ033EAHVw3V9lChoBmgJaA9DCDdQ4J18Ov6/lIaUUpRoFUsyaBZHQGdok9dNWU91fZQoaAZoCWgPQwiD2m/tREn4v5SGlFKUaBVLMmgWR0BnZKUcGTs6dX2UKGgGaAloD0MInnk57L4j+r+UhpRSlGgVSzJoFkdAZ2Cxu89Oh3V9lChoBmgJaA9DCJinc0Up4fi/lIaUUpRoFUsyaBZHQGdctS619fF1fZQoaAZoCWgPQwioyCHi5lT5v5SGlFKUaBVLMmgWR0BndzPGACnxdX2UKGgGaAloD0MIYp6VtOJb+b+UhpRSlGgVSzJoFkdAZ3NIPK+zt3V9lChoBmgJaA9DCFouG53z0/i/lIaUUpRoFUsyaBZHQGdvU7Sy+pR1fZQoaAZoCWgPQwjgK7r1mp77v5SGlFKUaBVLMmgWR0Bna1TrE9+xdX2UKGgGaAloD0MIIa0x6ISQ/L+UhpRSlGgVSzJoFkdAZ4XWwu/UOXV9lChoBmgJaA9DCAzO4O8Xs/a/lIaUUpRoFUsyaBZHQGeB57PY4AF1fZQoaAZoCWgPQwg1f0xr0xj9v5SGlFKUaBVLMmgWR0BnffLPldTpdX2UKGgGaAloD0MInbryWZ6nAcCUhpRSlGgVSzJoFkdAZ3n0HyEtd3V9lChoBmgJaA9DCD8fZcQF4PW/lIaUUpRoFUsyaBZHQGeXsqSX+l11fZQoaAZoCWgPQwgO+WcG8QH5v5SGlFKUaBVLMmgWR0Bnk8yeqaPTdX2UKGgGaAloD0MI6+Bgb2KI97+UhpRSlGgVSzJoFkdAZ4/nied073V9lChoBmgJaA9DCJOsw9FVOv2/lIaUUpRoFUsyaBZHQGeL8SGrS3N1fZQoaAZoCWgPQwj1u7A1Wzn8v5SGlFKUaBVLMmgWR0BnrYHcDbJwdX2UKGgGaAloD0MIdjV5ymo69b+UhpRSlGgVSzJoFkdAZ6mjY7JXAHV9lChoBmgJaA9DCCScFrzo6/u/lIaUUpRoFUsyaBZHQGelt3W4EwF1fZQoaAZoCWgPQwi6FFeVfdf8v5SGlFKUaBVLMmgWR0Bnob/bTMJQdX2UKGgGaAloD0MIo3iVtU1x+L+UhpRSlGgVSzJoFkdAZ8RxQSBbwHV9lChoBmgJaA9DCFW+ZyRCY/2/lIaUUpRoFUsyaBZHQGfArCN0eU91fZQoaAZoCWgPQwjhRsoWSTv4v5SGlFKUaBVLMmgWR0BnvLvJA+pwdX2UKGgGaAloD0MIJ6Q1Bp3Q/b+UhpRSlGgVSzJoFkdAZ7jFXJYDDHV9lChoBmgJaA9DCFJEhlW80f2/lIaUUpRoFUsyaBZHQGfcgRTS9dx1fZQoaAZoCWgPQwjkoe9uZUn5v5SGlFKUaBVLMmgWR0Bn2JxT850bdX2UKGgGaAloD0MIPBOaJJZU/L+UhpRSlGgVSzJoFkdAZ9Sx1PnB+HV9lChoBmgJaA9DCMU4fxMKUfq/lIaUUpRoFUsyaBZHQGfQwwsXizd1fZQoaAZoCWgPQwiKPh9lxEX9v5SGlFKUaBVLMmgWR0Bn9ZKpT/ACdX2UKGgGaAloD0MI0nKgh9q2/b+UhpRSlGgVSzJoFkdAZ/Gxk/bCanV9lChoBmgJaA9DCJBrQ8U4v/e/lIaUUpRoFUsyaBZHQGftx0U47zV1fZQoaAZoCWgPQwhK8fEJ2bn9v5SGlFKUaBVLMmgWR0Bn6d3np0OmdX2UKGgGaAloD0MIDJV/La/c9b+UhpRSlGgVSzJoFkdAaA2KXv6TGHV9lChoBmgJaA9DCLwft18+2fm/lIaUUpRoFUsyaBZHQGgJqK508vF1fZQoaAZoCWgPQwgi/IugMZP4v5SGlFKUaBVLMmgWR0BoBcBZIQOGdX2UKGgGaAloD0MIQxuADYiQ/L+UhpRSlGgVSzJoFkdAaAHIhhYvFnV9lChoBmgJaA9DCCWVKeYgqP+/lIaUUpRoFUsyaBZHQGglnq/ub7V1fZQoaAZoCWgPQwgtsp3vp8b9v5SGlFKUaBVLMmgWR0BoIbq4YrJ9dX2UKGgGaAloD0MI078klSkm9b+UhpRSlGgVSzJoFkdAaB3NHpbD/HV9lChoBmgJaA9DCC5W1GAaRvu/lIaUUpRoFUsyaBZHQGgZ1yvLX+V1fZQoaAZoCWgPQwim7zUEx6X3v5SGlFKUaBVLMmgWR0BoO1A3T/hmdX2UKGgGaAloD0MIX7adtkbE9L+UhpRSlGgVSzJoFkdAaDdjoZAIIHV9lChoBmgJaA9DCA1uawvPi/6/lIaUUpRoFUsyaBZHQGgzbXxvvSd1fZQoaAZoCWgPQwh6ppcYy7T8v5SGlFKUaBVLMmgWR0BoL2/336AOdX2UKGgGaAloD0MIF0m70cc8AcCUhpRSlGgVSzJoFkdAaEmxRl6JInV9lChoBmgJaA9DCBwj2SPUDPy/lIaUUpRoFUsyaBZHQGhFwmE4//x1fZQoaAZoCWgPQwgGvTeGAOD6v5SGlFKUaBVLMmgWR0BoQc9r433pdX2UKGgGaAloD0MIr+sX7IYt+7+UhpRSlGgVSzJoFkdAaD3PxhDw6XV9lChoBmgJaA9DCDHuBtFaMQPAlIaUUpRoFUsyaBZHQGhYNPHktEp1fZQoaAZoCWgPQwh2wHXFjLABwJSGlFKUaBVLMmgWR0BoVFm6GxlhdX2UKGgGaAloD0MIFhVxOsnW/7+UhpRSlGgVSzJoFkdAaFBwQUYbbXV9lChoBmgJaA9DCFs//WfND/2/lIaUUpRoFUsyaBZHQGhMe5WilBR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3486, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.2760087336879224, "std_reward": 0.16679763254929175, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-20T15:06:07.745881"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b4906503812c413a8de938429bfa148dd006f0ec6376d32c677dcf464ceb259
|
3 |
size 3056
|