update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
---
|
2 |
-
license: cc-by-nc-sa-4.0
|
3 |
-
base_model: microsoft/layoutlmv3-base
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
@@ -42,9 +40,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
42 |
|
43 |
# layoutlmv3-finetuned-invoice
|
44 |
|
45 |
-
This model
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
- Precision: 1.0
|
49 |
- Recall: 1.0
|
50 |
- F1: 1.0
|
@@ -73,62 +71,19 @@ The following hyperparameters were used during training:
|
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- training_steps:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| No log | 2.0 | 100 | 0.
|
83 |
-
| No log | 4.0 | 200 | 0.
|
84 |
-
| No log | 6.0 | 300 | 0.
|
85 |
-
| No log | 8.0 | 400 | 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.1264 | 16.0 | 800 | 0.0020 | 1.0 | 1.0 | 1.0 | 1.0 |
|
90 |
-
| 0.1264 | 18.0 | 900 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 |
|
91 |
-
| 0.0064 | 20.0 | 1000 | 0.0014 | 1.0 | 1.0 | 1.0 | 1.0 |
|
92 |
-
| 0.0064 | 22.0 | 1100 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 |
|
93 |
-
| 0.0064 | 24.0 | 1200 | 0.0010 | 1.0 | 1.0 | 1.0 | 1.0 |
|
94 |
-
| 0.0064 | 26.0 | 1300 | 0.0009 | 1.0 | 1.0 | 1.0 | 1.0 |
|
95 |
-
| 0.0064 | 28.0 | 1400 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
|
96 |
-
| 0.0018 | 30.0 | 1500 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
|
97 |
-
| 0.0018 | 32.0 | 1600 | 0.0007 | 1.0 | 1.0 | 1.0 | 1.0 |
|
98 |
-
| 0.0018 | 34.0 | 1700 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
99 |
-
| 0.0018 | 36.0 | 1800 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
100 |
-
| 0.0018 | 38.0 | 1900 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
101 |
-
| 0.0011 | 40.0 | 2000 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
102 |
-
| 0.0011 | 42.0 | 2100 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
103 |
-
| 0.0011 | 44.0 | 2200 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
|
104 |
-
| 0.0011 | 46.0 | 2300 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
|
105 |
-
| 0.0011 | 48.0 | 2400 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
|
106 |
-
| 0.0008 | 50.0 | 2500 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
|
107 |
-
| 0.0008 | 52.0 | 2600 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
|
108 |
-
| 0.0008 | 54.0 | 2700 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
|
109 |
-
| 0.0008 | 56.0 | 2800 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
|
110 |
-
| 0.0008 | 58.0 | 2900 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
|
111 |
-
| 0.0006 | 60.0 | 3000 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
|
112 |
-
| 0.0006 | 62.0 | 3100 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
|
113 |
-
| 0.0006 | 64.0 | 3200 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
|
114 |
-
| 0.0006 | 66.0 | 3300 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
115 |
-
| 0.0006 | 68.0 | 3400 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
116 |
-
| 0.0005 | 70.0 | 3500 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
117 |
-
| 0.0005 | 72.0 | 3600 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
118 |
-
| 0.0005 | 74.0 | 3700 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
119 |
-
| 0.0005 | 76.0 | 3800 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
120 |
-
| 0.0005 | 78.0 | 3900 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
121 |
-
| 0.0004 | 80.0 | 4000 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
122 |
-
| 0.0004 | 82.0 | 4100 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
123 |
-
| 0.0004 | 84.0 | 4200 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
124 |
-
| 0.0004 | 86.0 | 4300 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
125 |
-
| 0.0004 | 88.0 | 4400 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
126 |
-
| 0.0003 | 90.0 | 4500 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
127 |
-
| 0.0003 | 92.0 | 4600 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
128 |
-
| 0.0003 | 94.0 | 4700 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
129 |
-
| 0.0003 | 96.0 | 4800 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
130 |
-
| 0.0003 | 98.0 | 4900 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
131 |
-
| 0.0003 | 100.0 | 5000 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
132 |
|
133 |
|
134 |
### Framework versions
|
|
|
1 |
---
|
|
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
datasets:
|
|
|
40 |
|
41 |
# layoutlmv3-finetuned-invoice
|
42 |
|
43 |
+
This model was trained from scratch on the generated dataset.
|
44 |
It achieves the following results on the evaluation set:
|
45 |
+
- Loss: 0.0000
|
46 |
- Precision: 1.0
|
47 |
- Recall: 1.0
|
48 |
- F1: 1.0
|
|
|
71 |
- seed: 42
|
72 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
- lr_scheduler_type: linear
|
74 |
+
- training_steps: 750
|
75 |
|
76 |
### Training results
|
77 |
|
78 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
79 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
80 |
+
| No log | 2.0 | 100 | 0.0092 | 0.9959 | 0.9919 | 0.9939 | 0.9992 |
|
81 |
+
| No log | 4.0 | 200 | 0.0069 | 0.9959 | 0.9919 | 0.9939 | 0.9992 |
|
82 |
+
| No log | 6.0 | 300 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
83 |
+
| No log | 8.0 | 400 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
84 |
+
| 0.0005 | 10.0 | 500 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
85 |
+
| 0.0005 | 12.0 | 600 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
86 |
+
| 0.0005 | 14.0 | 700 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
|
89 |
### Framework versions
|