avurity commited on
Commit
19891b1
1 Parent(s): 7014f2d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -55
README.md CHANGED
@@ -1,6 +1,4 @@
1
  ---
2
- license: cc-by-nc-sa-4.0
3
- base_model: microsoft/layoutlmv3-base
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -42,9 +40,9 @@ should probably proofread and complete it, then remove this comment. -->
42
 
43
  # layoutlmv3-finetuned-invoice
44
 
45
- This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the generated dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0014
48
  - Precision: 1.0
49
  - Recall: 1.0
50
  - F1: 1.0
@@ -73,62 +71,19 @@ The following hyperparameters were used during training:
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
- - training_steps: 5000
77
 
78
  ### Training results
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | No log | 2.0 | 100 | 0.0766 | 0.97 | 0.9838 | 0.9768 | 0.9968 |
83
- | No log | 4.0 | 200 | 0.0214 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
84
- | No log | 6.0 | 300 | 0.0157 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
85
- | No log | 8.0 | 400 | 0.0142 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
86
- | 0.1264 | 10.0 | 500 | 0.0129 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
87
- | 0.1264 | 12.0 | 600 | 0.0118 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
88
- | 0.1264 | 14.0 | 700 | 0.0038 | 0.9980 | 0.9959 | 0.9970 | 0.9996 |
89
- | 0.1264 | 16.0 | 800 | 0.0020 | 1.0 | 1.0 | 1.0 | 1.0 |
90
- | 0.1264 | 18.0 | 900 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 |
91
- | 0.0064 | 20.0 | 1000 | 0.0014 | 1.0 | 1.0 | 1.0 | 1.0 |
92
- | 0.0064 | 22.0 | 1100 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 |
93
- | 0.0064 | 24.0 | 1200 | 0.0010 | 1.0 | 1.0 | 1.0 | 1.0 |
94
- | 0.0064 | 26.0 | 1300 | 0.0009 | 1.0 | 1.0 | 1.0 | 1.0 |
95
- | 0.0064 | 28.0 | 1400 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
96
- | 0.0018 | 30.0 | 1500 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
97
- | 0.0018 | 32.0 | 1600 | 0.0007 | 1.0 | 1.0 | 1.0 | 1.0 |
98
- | 0.0018 | 34.0 | 1700 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
99
- | 0.0018 | 36.0 | 1800 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
100
- | 0.0018 | 38.0 | 1900 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
101
- | 0.0011 | 40.0 | 2000 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
102
- | 0.0011 | 42.0 | 2100 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
103
- | 0.0011 | 44.0 | 2200 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
104
- | 0.0011 | 46.0 | 2300 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
105
- | 0.0011 | 48.0 | 2400 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
106
- | 0.0008 | 50.0 | 2500 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
107
- | 0.0008 | 52.0 | 2600 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
108
- | 0.0008 | 54.0 | 2700 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
109
- | 0.0008 | 56.0 | 2800 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
110
- | 0.0008 | 58.0 | 2900 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
111
- | 0.0006 | 60.0 | 3000 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
112
- | 0.0006 | 62.0 | 3100 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
113
- | 0.0006 | 64.0 | 3200 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
114
- | 0.0006 | 66.0 | 3300 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
115
- | 0.0006 | 68.0 | 3400 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
116
- | 0.0005 | 70.0 | 3500 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
117
- | 0.0005 | 72.0 | 3600 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
118
- | 0.0005 | 74.0 | 3700 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
119
- | 0.0005 | 76.0 | 3800 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
120
- | 0.0005 | 78.0 | 3900 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
121
- | 0.0004 | 80.0 | 4000 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
122
- | 0.0004 | 82.0 | 4100 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
123
- | 0.0004 | 84.0 | 4200 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
124
- | 0.0004 | 86.0 | 4300 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
125
- | 0.0004 | 88.0 | 4400 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
126
- | 0.0003 | 90.0 | 4500 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
127
- | 0.0003 | 92.0 | 4600 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
128
- | 0.0003 | 94.0 | 4700 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
129
- | 0.0003 | 96.0 | 4800 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
130
- | 0.0003 | 98.0 | 4900 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
131
- | 0.0003 | 100.0 | 5000 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
132
 
133
 
134
  ### Framework versions
 
1
  ---
 
 
2
  tags:
3
  - generated_from_trainer
4
  datasets:
 
40
 
41
  # layoutlmv3-finetuned-invoice
42
 
43
+ This model was trained from scratch on the generated dataset.
44
  It achieves the following results on the evaluation set:
45
+ - Loss: 0.0000
46
  - Precision: 1.0
47
  - Recall: 1.0
48
  - F1: 1.0
 
71
  - seed: 42
72
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
  - lr_scheduler_type: linear
74
+ - training_steps: 750
75
 
76
  ### Training results
77
 
78
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
79
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
80
+ | No log | 2.0 | 100 | 0.0092 | 0.9959 | 0.9919 | 0.9939 | 0.9992 |
81
+ | No log | 4.0 | 200 | 0.0069 | 0.9959 | 0.9919 | 0.9939 | 0.9992 |
82
+ | No log | 6.0 | 300 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
83
+ | No log | 8.0 | 400 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
84
+ | 0.0005 | 10.0 | 500 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
85
+ | 0.0005 | 12.0 | 600 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
86
+ | 0.0005 | 14.0 | 700 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
 
89
  ### Framework versions