avurity commited on
Commit
e3a9a1e
1 Parent(s): 37d249c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +139 -0
README.md ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ base_model: microsoft/layoutlmv3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - generated
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: layoutlmv3-finetuned-invoice
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: generated
21
+ type: generated
22
+ config: sroie
23
+ split: test
24
+ args: sroie
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 1.0
29
+ - name: Recall
30
+ type: recall
31
+ value: 1.0
32
+ - name: F1
33
+ type: f1
34
+ value: 1.0
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 1.0
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # layoutlmv3-finetuned-invoice
44
+
45
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the generated dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.0014
48
+ - Precision: 1.0
49
+ - Recall: 1.0
50
+ - F1: 1.0
51
+ - Accuracy: 1.0
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 1e-05
71
+ - train_batch_size: 2
72
+ - eval_batch_size: 2
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - training_steps: 5000
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 2.0 | 100 | 0.0766 | 0.97 | 0.9838 | 0.9768 | 0.9968 |
83
+ | No log | 4.0 | 200 | 0.0214 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
84
+ | No log | 6.0 | 300 | 0.0157 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
85
+ | No log | 8.0 | 400 | 0.0142 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
86
+ | 0.1264 | 10.0 | 500 | 0.0129 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
87
+ | 0.1264 | 12.0 | 600 | 0.0118 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
88
+ | 0.1264 | 14.0 | 700 | 0.0038 | 0.9980 | 0.9959 | 0.9970 | 0.9996 |
89
+ | 0.1264 | 16.0 | 800 | 0.0020 | 1.0 | 1.0 | 1.0 | 1.0 |
90
+ | 0.1264 | 18.0 | 900 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 |
91
+ | 0.0064 | 20.0 | 1000 | 0.0014 | 1.0 | 1.0 | 1.0 | 1.0 |
92
+ | 0.0064 | 22.0 | 1100 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 |
93
+ | 0.0064 | 24.0 | 1200 | 0.0010 | 1.0 | 1.0 | 1.0 | 1.0 |
94
+ | 0.0064 | 26.0 | 1300 | 0.0009 | 1.0 | 1.0 | 1.0 | 1.0 |
95
+ | 0.0064 | 28.0 | 1400 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
96
+ | 0.0018 | 30.0 | 1500 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
97
+ | 0.0018 | 32.0 | 1600 | 0.0007 | 1.0 | 1.0 | 1.0 | 1.0 |
98
+ | 0.0018 | 34.0 | 1700 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
99
+ | 0.0018 | 36.0 | 1800 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
100
+ | 0.0018 | 38.0 | 1900 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
101
+ | 0.0011 | 40.0 | 2000 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
102
+ | 0.0011 | 42.0 | 2100 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
103
+ | 0.0011 | 44.0 | 2200 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
104
+ | 0.0011 | 46.0 | 2300 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
105
+ | 0.0011 | 48.0 | 2400 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
106
+ | 0.0008 | 50.0 | 2500 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
107
+ | 0.0008 | 52.0 | 2600 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
108
+ | 0.0008 | 54.0 | 2700 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
109
+ | 0.0008 | 56.0 | 2800 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
110
+ | 0.0008 | 58.0 | 2900 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
111
+ | 0.0006 | 60.0 | 3000 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
112
+ | 0.0006 | 62.0 | 3100 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
113
+ | 0.0006 | 64.0 | 3200 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
114
+ | 0.0006 | 66.0 | 3300 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
115
+ | 0.0006 | 68.0 | 3400 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
116
+ | 0.0005 | 70.0 | 3500 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
117
+ | 0.0005 | 72.0 | 3600 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
118
+ | 0.0005 | 74.0 | 3700 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
119
+ | 0.0005 | 76.0 | 3800 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
120
+ | 0.0005 | 78.0 | 3900 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
121
+ | 0.0004 | 80.0 | 4000 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
122
+ | 0.0004 | 82.0 | 4100 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
123
+ | 0.0004 | 84.0 | 4200 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
124
+ | 0.0004 | 86.0 | 4300 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
125
+ | 0.0004 | 88.0 | 4400 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
126
+ | 0.0003 | 90.0 | 4500 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
127
+ | 0.0003 | 92.0 | 4600 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
128
+ | 0.0003 | 94.0 | 4700 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
129
+ | 0.0003 | 96.0 | 4800 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
130
+ | 0.0003 | 98.0 | 4900 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
131
+ | 0.0003 | 100.0 | 5000 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
132
+
133
+
134
+ ### Framework versions
135
+
136
+ - Transformers 4.32.0.dev0
137
+ - Pytorch 2.0.1+cu118
138
+ - Datasets 2.14.3
139
+ - Tokenizers 0.13.3