update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: microsoft/layoutlmv3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- generated
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: layoutlmv3-finetuned-invoice
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: generated
|
21 |
+
type: generated
|
22 |
+
config: sroie
|
23 |
+
split: test
|
24 |
+
args: sroie
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 1.0
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 1.0
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 1.0
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 1.0
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# layoutlmv3-finetuned-invoice
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the generated dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0014
|
48 |
+
- Precision: 1.0
|
49 |
+
- Recall: 1.0
|
50 |
+
- F1: 1.0
|
51 |
+
- Accuracy: 1.0
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 1e-05
|
71 |
+
- train_batch_size: 2
|
72 |
+
- eval_batch_size: 2
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- training_steps: 5000
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| No log | 2.0 | 100 | 0.0766 | 0.97 | 0.9838 | 0.9768 | 0.9968 |
|
83 |
+
| No log | 4.0 | 200 | 0.0214 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
84 |
+
| No log | 6.0 | 300 | 0.0157 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
85 |
+
| No log | 8.0 | 400 | 0.0142 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
86 |
+
| 0.1264 | 10.0 | 500 | 0.0129 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
87 |
+
| 0.1264 | 12.0 | 600 | 0.0118 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
88 |
+
| 0.1264 | 14.0 | 700 | 0.0038 | 0.9980 | 0.9959 | 0.9970 | 0.9996 |
|
89 |
+
| 0.1264 | 16.0 | 800 | 0.0020 | 1.0 | 1.0 | 1.0 | 1.0 |
|
90 |
+
| 0.1264 | 18.0 | 900 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 |
|
91 |
+
| 0.0064 | 20.0 | 1000 | 0.0014 | 1.0 | 1.0 | 1.0 | 1.0 |
|
92 |
+
| 0.0064 | 22.0 | 1100 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 |
|
93 |
+
| 0.0064 | 24.0 | 1200 | 0.0010 | 1.0 | 1.0 | 1.0 | 1.0 |
|
94 |
+
| 0.0064 | 26.0 | 1300 | 0.0009 | 1.0 | 1.0 | 1.0 | 1.0 |
|
95 |
+
| 0.0064 | 28.0 | 1400 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
|
96 |
+
| 0.0018 | 30.0 | 1500 | 0.0008 | 1.0 | 1.0 | 1.0 | 1.0 |
|
97 |
+
| 0.0018 | 32.0 | 1600 | 0.0007 | 1.0 | 1.0 | 1.0 | 1.0 |
|
98 |
+
| 0.0018 | 34.0 | 1700 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
99 |
+
| 0.0018 | 36.0 | 1800 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
|
100 |
+
| 0.0018 | 38.0 | 1900 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
101 |
+
| 0.0011 | 40.0 | 2000 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
102 |
+
| 0.0011 | 42.0 | 2100 | 0.0005 | 1.0 | 1.0 | 1.0 | 1.0 |
|
103 |
+
| 0.0011 | 44.0 | 2200 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
|
104 |
+
| 0.0011 | 46.0 | 2300 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
|
105 |
+
| 0.0011 | 48.0 | 2400 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
|
106 |
+
| 0.0008 | 50.0 | 2500 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
|
107 |
+
| 0.0008 | 52.0 | 2600 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
|
108 |
+
| 0.0008 | 54.0 | 2700 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
|
109 |
+
| 0.0008 | 56.0 | 2800 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
|
110 |
+
| 0.0008 | 58.0 | 2900 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
|
111 |
+
| 0.0006 | 60.0 | 3000 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
|
112 |
+
| 0.0006 | 62.0 | 3100 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
|
113 |
+
| 0.0006 | 64.0 | 3200 | 0.0003 | 1.0 | 1.0 | 1.0 | 1.0 |
|
114 |
+
| 0.0006 | 66.0 | 3300 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
115 |
+
| 0.0006 | 68.0 | 3400 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
116 |
+
| 0.0005 | 70.0 | 3500 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
117 |
+
| 0.0005 | 72.0 | 3600 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
118 |
+
| 0.0005 | 74.0 | 3700 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
119 |
+
| 0.0005 | 76.0 | 3800 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
120 |
+
| 0.0005 | 78.0 | 3900 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
121 |
+
| 0.0004 | 80.0 | 4000 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
122 |
+
| 0.0004 | 82.0 | 4100 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
123 |
+
| 0.0004 | 84.0 | 4200 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
124 |
+
| 0.0004 | 86.0 | 4300 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
125 |
+
| 0.0004 | 88.0 | 4400 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
126 |
+
| 0.0003 | 90.0 | 4500 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
127 |
+
| 0.0003 | 92.0 | 4600 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
128 |
+
| 0.0003 | 94.0 | 4700 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
129 |
+
| 0.0003 | 96.0 | 4800 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
130 |
+
| 0.0003 | 98.0 | 4900 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
131 |
+
| 0.0003 | 100.0 | 5000 | 0.0002 | 1.0 | 1.0 | 1.0 | 1.0 |
|
132 |
+
|
133 |
+
|
134 |
+
### Framework versions
|
135 |
+
|
136 |
+
- Transformers 4.32.0.dev0
|
137 |
+
- Pytorch 2.0.1+cu118
|
138 |
+
- Datasets 2.14.3
|
139 |
+
- Tokenizers 0.13.3
|