File size: 5,699 Bytes
1c4ba04 39ae538 1c4ba04 39ae538 1c4ba04 39ae538 1c4ba04 39ae538 1c4ba04 39ae538 1c4ba04 39ae538 1c4ba04 39ae538 1c4ba04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
datasets:
- wildreceipt
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-wildreceipt
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wildreceipt
type: wildreceipt
config: WildReceipt
split: test
args: WildReceipt
metrics:
- name: Precision
type: precision
value: 0.8738394320043692
- name: Recall
type: recall
value: 0.88093599449415
- name: F1
type: f1
value: 0.8773733634930428
- name: Accuracy
type: accuracy
value: 0.9245552383044147
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-finetuned-wildreceipt
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the wildreceipt dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3068
- Precision: 0.8738
- Recall: 0.8809
- F1: 0.8774
- Accuracy: 0.9246
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 4000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 0.32 | 100 | 1.3498 | 0.6130 | 0.3126 | 0.4140 | 0.6742 |
| No log | 0.63 | 200 | 0.8939 | 0.6665 | 0.5317 | 0.5915 | 0.7815 |
| No log | 0.95 | 300 | 0.7159 | 0.7311 | 0.6425 | 0.6840 | 0.8161 |
| No log | 1.26 | 400 | 0.5901 | 0.7554 | 0.6690 | 0.7095 | 0.8405 |
| 1.0677 | 1.58 | 500 | 0.5263 | 0.7632 | 0.7232 | 0.7427 | 0.8578 |
| 1.0677 | 1.89 | 600 | 0.4759 | 0.7871 | 0.7777 | 0.7824 | 0.8774 |
| 1.0677 | 2.21 | 700 | 0.4299 | 0.8054 | 0.8070 | 0.8062 | 0.8890 |
| 1.0677 | 2.52 | 800 | 0.4165 | 0.8064 | 0.8311 | 0.8185 | 0.8937 |
| 1.0677 | 2.84 | 900 | 0.3845 | 0.8344 | 0.8300 | 0.8322 | 0.9005 |
| 0.4267 | 3.15 | 1000 | 0.3540 | 0.8433 | 0.8318 | 0.8375 | 0.9056 |
| 0.4267 | 3.47 | 1100 | 0.3429 | 0.8362 | 0.8540 | 0.8450 | 0.9086 |
| 0.4267 | 3.79 | 1200 | 0.3274 | 0.8451 | 0.8545 | 0.8498 | 0.9105 |
| 0.4267 | 4.1 | 1300 | 0.3433 | 0.8397 | 0.8535 | 0.8466 | 0.9092 |
| 0.4267 | 4.42 | 1400 | 0.3181 | 0.8514 | 0.8604 | 0.8559 | 0.9154 |
| 0.2869 | 4.73 | 1500 | 0.3191 | 0.8472 | 0.8637 | 0.8554 | 0.9129 |
| 0.2869 | 5.05 | 1600 | 0.3128 | 0.8613 | 0.8658 | 0.8635 | 0.9182 |
| 0.2869 | 5.36 | 1700 | 0.3121 | 0.8622 | 0.8695 | 0.8658 | 0.9182 |
| 0.2869 | 5.68 | 1800 | 0.3230 | 0.8473 | 0.8661 | 0.8566 | 0.9140 |
| 0.2869 | 5.99 | 1900 | 0.2986 | 0.8729 | 0.8633 | 0.8681 | 0.9209 |
| 0.2134 | 6.31 | 2000 | 0.3032 | 0.8555 | 0.8694 | 0.8624 | 0.9169 |
| 0.2134 | 6.62 | 2100 | 0.3056 | 0.8705 | 0.8710 | 0.8708 | 0.9220 |
| 0.2134 | 6.94 | 2200 | 0.3122 | 0.8630 | 0.8790 | 0.8709 | 0.9217 |
| 0.2134 | 7.26 | 2300 | 0.3047 | 0.8692 | 0.8778 | 0.8734 | 0.9215 |
| 0.2134 | 7.57 | 2400 | 0.3103 | 0.8701 | 0.8780 | 0.8741 | 0.9225 |
| 0.1661 | 7.89 | 2500 | 0.3080 | 0.8712 | 0.8787 | 0.8749 | 0.9226 |
| 0.1661 | 8.2 | 2600 | 0.3011 | 0.8653 | 0.8834 | 0.8743 | 0.9236 |
| 0.1661 | 8.52 | 2700 | 0.3034 | 0.8735 | 0.8798 | 0.8766 | 0.9247 |
| 0.1661 | 8.83 | 2800 | 0.3054 | 0.8698 | 0.8793 | 0.8745 | 0.9238 |
| 0.1661 | 9.15 | 2900 | 0.3105 | 0.8697 | 0.8812 | 0.8754 | 0.9237 |
| 0.1415 | 9.46 | 3000 | 0.3068 | 0.8738 | 0.8809 | 0.8774 | 0.9246 |
| 0.1415 | 9.78 | 3100 | 0.3086 | 0.8730 | 0.8793 | 0.8761 | 0.9229 |
| 0.1415 | 10.09 | 3200 | 0.3013 | 0.8755 | 0.8830 | 0.8792 | 0.9256 |
| 0.1415 | 10.41 | 3300 | 0.3107 | 0.8692 | 0.8815 | 0.8753 | 0.9241 |
| 0.1415 | 10.73 | 3400 | 0.3073 | 0.8759 | 0.8794 | 0.8777 | 0.9261 |
| 0.1239 | 11.04 | 3500 | 0.3109 | 0.8727 | 0.8819 | 0.8773 | 0.9253 |
| 0.1239 | 11.36 | 3600 | 0.3124 | 0.8723 | 0.8790 | 0.8756 | 0.9243 |
| 0.1239 | 11.67 | 3700 | 0.3171 | 0.8724 | 0.8805 | 0.8764 | 0.9241 |
| 0.1239 | 11.99 | 3800 | 0.3081 | 0.8739 | 0.8804 | 0.8771 | 0.9254 |
| 0.1239 | 12.3 | 3900 | 0.3095 | 0.8735 | 0.8798 | 0.8766 | 0.9254 |
| 0.1106 | 12.62 | 4000 | 0.3094 | 0.8740 | 0.8796 | 0.8768 | 0.9254 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.0
- Datasets 2.14.3
- Tokenizers 0.13.3
|