ayaderaghul commited on
Commit
0363e6d
1 Parent(s): 9a2aba1

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +1 -0
  2. g_model_AtoB_002160.h5 +3 -0
  3. main.py +39 -0
README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ # keras-streamlit
g_model_AtoB_002160.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af168a96d6f548ae084a9608211822e7da935f9ace3192d25a9eb77372acd1e8
3
+ size 141314344
main.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import streamlit as st
3
+
4
+ from tensorflow.keras.models import load_model
5
+
6
+ import numpy as np
7
+
8
+ import matplitlib.pyplot as plt
9
+
10
+ st.header("Photo to Monet")
11
+
12
+ st.caption('Upload an image 256x256')
13
+
14
+ model = load_model('g_model_AtoB_002160.h5')
15
+
16
+ @st.cache
17
+ def load_image(image_file):
18
+ img=plt.imread(image_file)
19
+ return img
20
+
21
+ imgpath = st.file_uploader("Choose a file", type =['png', 'jpeg', 'jpg'])
22
+
23
+ if imgpath is not None:
24
+
25
+ img = load_image(imgpath )
26
+
27
+ st.image(img, width=250)
28
+
29
+
30
+ def convert(image):
31
+ img=load_image(img,target_size=(256,256))
32
+ img_array = np.reshape(img, (1, 256, 256, 3))
33
+ result=model.predict(img_array)
34
+ result=np.squeeze(img,axis=0)
35
+ return result
36
+
37
+ if st.button('Convert'):
38
+ result=convert(imagepath)
39
+ st.image(result)