Model save
Browse files
README.md
CHANGED
@@ -20,13 +20,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Accuracy:
|
25 |
-
- F1:
|
26 |
-
- Recall:
|
27 |
-
- Precision:
|
28 |
-
- Mcc:
|
29 |
-
- Auc:
|
30 |
|
31 |
## Model description
|
32 |
|
@@ -45,12 +45,10 @@ More information needed
|
|
45 |
### Training hyperparameters
|
46 |
|
47 |
The following hyperparameters were used during training:
|
48 |
-
- learning_rate:
|
49 |
- train_batch_size: 8
|
50 |
- eval_batch_size: 8
|
51 |
- seed: 42
|
52 |
-
- gradient_accumulation_steps: 16
|
53 |
-
- total_train_batch_size: 128
|
54 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
- lr_scheduler_type: linear
|
56 |
- lr_scheduler_warmup_ratio: 0.1
|
@@ -61,21 +59,21 @@ The following hyperparameters were used during training:
|
|
61 |
|
62 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | Mcc | Auc |
|
63 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|:------:|:------:|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
|
75 |
|
76 |
### Framework versions
|
77 |
|
78 |
-
- Transformers 4.
|
79 |
-
- Pytorch 2.
|
80 |
- Datasets 2.19.1
|
81 |
- Tokenizers 0.19.1
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.2002
|
24 |
+
- Accuracy: 0.955
|
25 |
+
- F1: 0.9549
|
26 |
+
- Recall: 0.9550
|
27 |
+
- Precision: 0.9551
|
28 |
+
- Mcc: 0.9438
|
29 |
+
- Auc: 0.9942
|
30 |
|
31 |
## Model description
|
32 |
|
|
|
45 |
### Training hyperparameters
|
46 |
|
47 |
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 1e-05
|
49 |
- train_batch_size: 8
|
50 |
- eval_batch_size: 8
|
51 |
- seed: 42
|
|
|
|
|
52 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
- lr_scheduler_type: linear
|
54 |
- lr_scheduler_warmup_ratio: 0.1
|
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | Mcc | Auc |
|
61 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|:------:|:------:|
|
62 |
+
| 1.5544 | 1.0 | 200 | 1.5193 | 0.405 | 0.3628 | 0.4050 | 0.5940 | 0.2904 | 0.8407 |
|
63 |
+
| 1.1406 | 2.0 | 400 | 0.9811 | 0.6375 | 0.5780 | 0.6375 | 0.6712 | 0.5734 | 0.9464 |
|
64 |
+
| 0.7902 | 3.0 | 600 | 0.6775 | 0.8125 | 0.7969 | 0.8125 | 0.8181 | 0.7740 | 0.9724 |
|
65 |
+
| 0.5346 | 4.0 | 800 | 0.5083 | 0.8725 | 0.8683 | 0.8725 | 0.8774 | 0.8438 | 0.9834 |
|
66 |
+
| 0.5139 | 5.0 | 1000 | 0.3943 | 0.9025 | 0.8988 | 0.9025 | 0.9074 | 0.8809 | 0.9879 |
|
67 |
+
| 0.5136 | 6.0 | 1200 | 0.3314 | 0.915 | 0.9145 | 0.915 | 0.9174 | 0.8945 | 0.9881 |
|
68 |
+
| 0.3726 | 7.0 | 1400 | 0.2894 | 0.925 | 0.9241 | 0.925 | 0.9258 | 0.9069 | 0.9878 |
|
69 |
+
| 0.3072 | 8.0 | 1600 | 0.2267 | 0.9325 | 0.9314 | 0.9325 | 0.9349 | 0.9167 | 0.9914 |
|
70 |
+
| 0.1948 | 9.0 | 1800 | 0.2117 | 0.945 | 0.9445 | 0.945 | 0.9461 | 0.9317 | 0.9931 |
|
71 |
+
| 0.2312 | 10.0 | 2000 | 0.2002 | 0.955 | 0.9549 | 0.9550 | 0.9551 | 0.9438 | 0.9942 |
|
72 |
|
73 |
|
74 |
### Framework versions
|
75 |
|
76 |
+
- Transformers 4.41.0
|
77 |
+
- Pytorch 2.3.0+cu121
|
78 |
- Datasets 2.19.1
|
79 |
- Tokenizers 0.19.1
|