--- license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: hubert-base-ls960-finetuned-common_voice results: [] --- # hubert-base-ls960-finetuned-common_voice This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2002 - Accuracy: 0.955 - F1: 0.9549 - Recall: 0.9550 - Precision: 0.9551 - Mcc: 0.9438 - Auc: 0.9942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | Mcc | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|:------:|:------:| | 1.5544 | 1.0 | 200 | 1.5193 | 0.405 | 0.3628 | 0.4050 | 0.5940 | 0.2904 | 0.8407 | | 1.1406 | 2.0 | 400 | 0.9811 | 0.6375 | 0.5780 | 0.6375 | 0.6712 | 0.5734 | 0.9464 | | 0.7902 | 3.0 | 600 | 0.6775 | 0.8125 | 0.7969 | 0.8125 | 0.8181 | 0.7740 | 0.9724 | | 0.5346 | 4.0 | 800 | 0.5083 | 0.8725 | 0.8683 | 0.8725 | 0.8774 | 0.8438 | 0.9834 | | 0.5139 | 5.0 | 1000 | 0.3943 | 0.9025 | 0.8988 | 0.9025 | 0.9074 | 0.8809 | 0.9879 | | 0.5136 | 6.0 | 1200 | 0.3314 | 0.915 | 0.9145 | 0.915 | 0.9174 | 0.8945 | 0.9881 | | 0.3726 | 7.0 | 1400 | 0.2894 | 0.925 | 0.9241 | 0.925 | 0.9258 | 0.9069 | 0.9878 | | 0.3072 | 8.0 | 1600 | 0.2267 | 0.9325 | 0.9314 | 0.9325 | 0.9349 | 0.9167 | 0.9914 | | 0.1948 | 9.0 | 1800 | 0.2117 | 0.945 | 0.9445 | 0.945 | 0.9461 | 0.9317 | 0.9931 | | 0.2312 | 10.0 | 2000 | 0.2002 | 0.955 | 0.9549 | 0.9550 | 0.9551 | 0.9438 | 0.9942 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1