--- license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: hubert-base-ls960-finetuned-common_voice results: [] --- # hubert-base-ls960-finetuned-common_voice This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1194 - Accuracy: 0.9925 - F1: 0.9925 - Recall: 0.9925 - Precision: 0.9926 - Mcc: 0.9906 - Auc: 0.9994 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | Mcc | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|:------:|:------:| | 0.6461 | 0.96 | 12 | 0.4123 | 0.9725 | 0.9725 | 0.9725 | 0.9736 | 0.9659 | 0.9992 | | 0.622 | 2.0 | 25 | 0.3858 | 0.9225 | 0.9214 | 0.9225 | 0.9354 | 0.9067 | 0.9943 | | 0.4827 | 2.96 | 37 | 0.2750 | 0.97 | 0.9699 | 0.97 | 0.9731 | 0.9633 | 0.9988 | | 0.3907 | 4.0 | 50 | 0.2061 | 0.98 | 0.9800 | 0.9800 | 0.9809 | 0.9752 | 0.9998 | | 0.3212 | 4.96 | 62 | 0.1654 | 0.99 | 0.9900 | 0.9900 | 0.9902 | 0.9875 | 0.9999 | | 0.2865 | 6.0 | 75 | 0.1355 | 0.9925 | 0.9925 | 0.9925 | 0.9926 | 0.9906 | 1.0000 | | 0.278 | 6.96 | 87 | 0.1379 | 0.9925 | 0.9925 | 0.9925 | 0.9926 | 0.9906 | 0.9989 | | 0.2285 | 8.0 | 100 | 0.1199 | 0.995 | 0.9950 | 0.9950 | 0.9950 | 0.9938 | 0.9993 | | 0.1975 | 8.96 | 112 | 0.1239 | 0.99 | 0.9900 | 0.9900 | 0.9902 | 0.9875 | 0.9994 | | 0.1949 | 9.6 | 120 | 0.1194 | 0.9925 | 0.9925 | 0.9925 | 0.9926 | 0.9906 | 0.9994 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1