--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: whisper-base-finetuned-common_voice results: [] --- # whisper-base-finetuned-common_voice This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0319 - Accuracy: 0.9925 - F1: 0.9925 - Recall: 0.9925 - Precision: 0.9927 - Mcc: 0.9907 - Auc: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | Mcc | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|:------:|:------:| | 0.1765 | 1.0 | 200 | 0.1455 | 0.9775 | 0.9775 | 0.9775 | 0.9776 | 0.9719 | 0.9996 | | 0.0067 | 2.0 | 400 | 0.0734 | 0.98 | 0.9800 | 0.9800 | 0.9804 | 0.9751 | 0.9996 | | 0.0218 | 3.0 | 600 | 0.0719 | 0.9875 | 0.9875 | 0.9875 | 0.9879 | 0.9845 | 0.9999 | | 0.002 | 4.0 | 800 | 0.1055 | 0.975 | 0.9752 | 0.975 | 0.9762 | 0.9690 | 0.9997 | | 0.0014 | 5.0 | 1000 | 0.0312 | 0.995 | 0.9950 | 0.9950 | 0.9951 | 0.9938 | 0.9999 | | 0.0011 | 6.0 | 1200 | 0.0305 | 0.995 | 0.9950 | 0.9950 | 0.9951 | 0.9938 | 0.9999 | | 0.0009 | 7.0 | 1400 | 0.0310 | 0.995 | 0.9950 | 0.9950 | 0.9951 | 0.9938 | 0.9999 | | 0.0008 | 8.0 | 1600 | 0.0315 | 0.9925 | 0.9925 | 0.9925 | 0.9927 | 0.9907 | 0.9999 | | 0.0008 | 9.0 | 1800 | 0.0318 | 0.9925 | 0.9925 | 0.9925 | 0.9927 | 0.9907 | 0.9999 | | 0.0007 | 10.0 | 2000 | 0.0319 | 0.9925 | 0.9925 | 0.9925 | 0.9927 | 0.9907 | 0.9999 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1