update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice_11_0
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-large-xls-r-1b-swahili-v12
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Automatic Speech Recognition
|
14 |
+
type: automatic-speech-recognition
|
15 |
+
dataset:
|
16 |
+
name: common_voice_11_0
|
17 |
+
type: common_voice_11_0
|
18 |
+
config: sw
|
19 |
+
split: test
|
20 |
+
args: sw
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 0.20382121671954753
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# wav2vec2-large-xls-r-1b-swahili-v12
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_11_0 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.4658
|
35 |
+
- Wer: 0.2038
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 0.0003
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 2
|
59 |
+
- total_train_batch_size: 32
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_steps: 500
|
63 |
+
- num_epochs: 30
|
64 |
+
- mixed_precision_training: Native AMP
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
69 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
70 |
+
| 2.726 | 0.35 | 400 | 0.7214 | 0.6674 |
|
71 |
+
| 0.5241 | 0.69 | 800 | 0.5641 | 0.5345 |
|
72 |
+
| 0.4616 | 1.04 | 1200 | 0.5112 | 0.4755 |
|
73 |
+
| 0.4018 | 1.39 | 1600 | 0.4797 | 0.4158 |
|
74 |
+
| 0.3916 | 1.74 | 2000 | 0.4483 | 0.3985 |
|
75 |
+
| 0.3661 | 2.08 | 2400 | 0.4449 | 0.3931 |
|
76 |
+
| 0.3314 | 2.43 | 2800 | 0.4124 | 0.3549 |
|
77 |
+
| 0.3287 | 2.78 | 3200 | 0.4008 | 0.3651 |
|
78 |
+
| 0.317 | 3.13 | 3600 | 0.4460 | 0.3735 |
|
79 |
+
| 0.3026 | 3.47 | 4000 | 0.4165 | 0.3753 |
|
80 |
+
| 0.3061 | 3.82 | 4400 | 0.4112 | 0.3550 |
|
81 |
+
| 0.2808 | 4.17 | 4800 | 0.3951 | 0.3275 |
|
82 |
+
| 0.2641 | 4.52 | 5200 | 0.3934 | 0.3340 |
|
83 |
+
| 0.2709 | 4.86 | 5600 | 0.3963 | 0.3287 |
|
84 |
+
| 0.2586 | 5.21 | 6000 | 0.4114 | 0.3396 |
|
85 |
+
| 0.2487 | 5.56 | 6400 | 0.3821 | 0.3214 |
|
86 |
+
| 0.2618 | 5.91 | 6800 | 0.3987 | 0.3268 |
|
87 |
+
| 0.2297 | 6.25 | 7200 | 0.3810 | 0.3132 |
|
88 |
+
| 0.2337 | 6.6 | 7600 | 0.3740 | 0.3131 |
|
89 |
+
| 0.2285 | 6.95 | 8000 | 0.3715 | 0.3093 |
|
90 |
+
| 0.2173 | 7.29 | 8400 | 0.3878 | 0.3147 |
|
91 |
+
| 0.2251 | 7.64 | 8800 | 0.3862 | 0.3134 |
|
92 |
+
| 0.2215 | 7.99 | 9200 | 0.3621 | 0.2940 |
|
93 |
+
| 0.195 | 8.34 | 9600 | 0.3651 | 0.3005 |
|
94 |
+
| 0.201 | 8.68 | 10000 | 0.3837 | 0.3167 |
|
95 |
+
| 0.1964 | 9.03 | 10400 | 0.3719 | 0.2876 |
|
96 |
+
| 0.1741 | 9.38 | 10800 | 0.3637 | 0.2840 |
|
97 |
+
| 0.181 | 9.73 | 11200 | 0.3616 | 0.2914 |
|
98 |
+
| 0.1795 | 10.07 | 11600 | 0.3719 | 0.2753 |
|
99 |
+
| 0.1602 | 10.42 | 12000 | 0.3618 | 0.2856 |
|
100 |
+
| 0.1753 | 10.77 | 12400 | 0.3570 | 0.2788 |
|
101 |
+
| 0.1627 | 11.12 | 12800 | 0.3500 | 0.2719 |
|
102 |
+
| 0.1566 | 11.46 | 13200 | 0.3553 | 0.2808 |
|
103 |
+
| 0.1589 | 11.81 | 13600 | 0.3635 | 0.2699 |
|
104 |
+
| 0.1511 | 12.16 | 14000 | 0.3656 | 0.2692 |
|
105 |
+
| 0.1451 | 12.51 | 14400 | 0.3759 | 0.2759 |
|
106 |
+
| 0.1444 | 12.85 | 14800 | 0.3607 | 0.2677 |
|
107 |
+
| 0.1359 | 13.2 | 15200 | 0.3852 | 0.2660 |
|
108 |
+
| 0.1313 | 13.55 | 15600 | 0.3587 | 0.2679 |
|
109 |
+
| 0.1329 | 13.89 | 16000 | 0.3548 | 0.2584 |
|
110 |
+
| 0.1163 | 14.24 | 16400 | 0.3701 | 0.2535 |
|
111 |
+
| 0.1175 | 14.59 | 16800 | 0.3693 | 0.2638 |
|
112 |
+
| 0.1242 | 14.94 | 17200 | 0.3660 | 0.2565 |
|
113 |
+
| 0.1067 | 15.28 | 17600 | 0.3835 | 0.2581 |
|
114 |
+
| 0.1077 | 15.63 | 18000 | 0.3799 | 0.2504 |
|
115 |
+
| 0.1099 | 15.98 | 18400 | 0.3598 | 0.2478 |
|
116 |
+
| 0.0952 | 16.33 | 18800 | 0.3865 | 0.2563 |
|
117 |
+
| 0.1007 | 16.67 | 19200 | 0.3630 | 0.2565 |
|
118 |
+
| 0.0999 | 17.02 | 19600 | 0.3912 | 0.2505 |
|
119 |
+
| 0.0895 | 17.37 | 20000 | 0.3934 | 0.2631 |
|
120 |
+
| 0.0974 | 17.72 | 20400 | 0.3718 | 0.2462 |
|
121 |
+
| 0.0939 | 18.06 | 20800 | 0.4001 | 0.2587 |
|
122 |
+
| 0.0915 | 18.41 | 21200 | 0.4048 | 0.2468 |
|
123 |
+
| 0.0865 | 18.76 | 21600 | 0.3860 | 0.2415 |
|
124 |
+
| 0.0784 | 19.11 | 22000 | 0.4148 | 0.2454 |
|
125 |
+
| 0.0782 | 19.45 | 22400 | 0.3952 | 0.2471 |
|
126 |
+
| 0.0775 | 19.8 | 22800 | 0.3943 | 0.2434 |
|
127 |
+
| 0.0735 | 20.15 | 23200 | 0.4093 | 0.2405 |
|
128 |
+
| 0.0679 | 20.5 | 23600 | 0.3996 | 0.2362 |
|
129 |
+
| 0.0677 | 20.84 | 24000 | 0.4133 | 0.2365 |
|
130 |
+
| 0.0687 | 21.19 | 24400 | 0.4303 | 0.2330 |
|
131 |
+
| 0.0651 | 21.54 | 24800 | 0.4288 | 0.2326 |
|
132 |
+
| 0.0647 | 21.88 | 25200 | 0.4134 | 0.2347 |
|
133 |
+
| 0.0634 | 22.23 | 25600 | 0.4148 | 0.2312 |
|
134 |
+
| 0.0592 | 22.58 | 26000 | 0.4322 | 0.2315 |
|
135 |
+
| 0.06 | 22.93 | 26400 | 0.4050 | 0.2313 |
|
136 |
+
| 0.0561 | 23.27 | 26800 | 0.4260 | 0.2263 |
|
137 |
+
| 0.0546 | 23.62 | 27200 | 0.4228 | 0.2238 |
|
138 |
+
| 0.0548 | 23.97 | 27600 | 0.4140 | 0.2258 |
|
139 |
+
| 0.0505 | 24.32 | 28000 | 0.4304 | 0.2246 |
|
140 |
+
| 0.0501 | 24.66 | 28400 | 0.4241 | 0.2233 |
|
141 |
+
| 0.0481 | 25.01 | 28800 | 0.4385 | 0.2209 |
|
142 |
+
| 0.0469 | 25.36 | 29200 | 0.4451 | 0.2189 |
|
143 |
+
| 0.0464 | 25.71 | 29600 | 0.4397 | 0.2217 |
|
144 |
+
| 0.0438 | 26.05 | 30000 | 0.4419 | 0.2154 |
|
145 |
+
| 0.0432 | 26.4 | 30400 | 0.4366 | 0.2137 |
|
146 |
+
| 0.0419 | 26.75 | 30800 | 0.4371 | 0.2137 |
|
147 |
+
| 0.0419 | 27.1 | 31200 | 0.4552 | 0.2109 |
|
148 |
+
| 0.0392 | 27.44 | 31600 | 0.4496 | 0.2108 |
|
149 |
+
| 0.0386 | 27.79 | 32000 | 0.4585 | 0.2096 |
|
150 |
+
| 0.0387 | 28.14 | 32400 | 0.4496 | 0.2065 |
|
151 |
+
| 0.0367 | 28.48 | 32800 | 0.4646 | 0.2082 |
|
152 |
+
| 0.0357 | 28.83 | 33200 | 0.4553 | 0.2067 |
|
153 |
+
| 0.0355 | 29.18 | 33600 | 0.4615 | 0.2055 |
|
154 |
+
| 0.0345 | 29.53 | 34000 | 0.4670 | 0.2046 |
|
155 |
+
| 0.0346 | 29.87 | 34400 | 0.4658 | 0.2038 |
|
156 |
+
|
157 |
+
|
158 |
+
### Framework versions
|
159 |
+
|
160 |
+
- Transformers 4.29.0.dev0
|
161 |
+
- Pytorch 2.0.0+cu117
|
162 |
+
- Datasets 2.12.0
|
163 |
+
- Tokenizers 0.13.3
|