File size: 3,145 Bytes
777ec26
eefc00e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
777ec26
 
eefc00e
 
777ec26
eefc00e
777ec26
eefc00e
 
 
 
 
777ec26
eefc00e
777ec26
eefc00e
777ec26
eefc00e
777ec26
eefc00e
777ec26
eefc00e
777ec26
eefc00e
777ec26
eefc00e
777ec26
eefc00e
777ec26
eefc00e
 
 
 
 
 
 
 
 
 
 
 
777ec26
eefc00e
777ec26
eefc00e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
777ec26
 
eefc00e
777ec26
eefc00e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
datasets:
- common_voice_16_1
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-upper-sorbian-cz-frozen-2-colab
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_16_1
      type: common_voice_16_1
      config: hsb
      split: test
      args: hsb
    metrics:
    - name: Wer
      type: wer
      value: 0.4301780693533271
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-upper-sorbian-cz-frozen-2-colab

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_16_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7163
- Wer: 0.4302
- Cer: 0.1003

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 60
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.6172        | 3.23  | 100  | 0.6599          | 0.6999 | 0.1787 |
| 0.4414        | 6.45  | 200  | 0.6030          | 0.6251 | 0.1524 |
| 0.289         | 9.68  | 300  | 0.5899          | 0.5670 | 0.1336 |
| 0.1953        | 12.9  | 400  | 0.6095          | 0.5457 | 0.1308 |
| 0.1388        | 16.13 | 500  | 0.6628          | 0.5159 | 0.1224 |
| 0.1187        | 19.35 | 600  | 0.7075          | 0.4932 | 0.1180 |
| 0.0994        | 22.58 | 700  | 0.7131          | 0.4780 | 0.1143 |
| 0.0816        | 25.81 | 800  | 0.6959          | 0.4752 | 0.1101 |
| 0.0727        | 29.03 | 900  | 0.7201          | 0.4644 | 0.1104 |
| 0.0637        | 32.26 | 1000 | 0.7288          | 0.4630 | 0.1080 |
| 0.0592        | 35.48 | 1100 | 0.7219          | 0.4524 | 0.1056 |
| 0.0549        | 38.71 | 1200 | 0.7204          | 0.4480 | 0.1041 |
| 0.0473        | 41.94 | 1300 | 0.7238          | 0.4470 | 0.1048 |
| 0.0412        | 45.16 | 1400 | 0.7109          | 0.4278 | 0.1011 |
| 0.0423        | 48.39 | 1500 | 0.7252          | 0.4407 | 0.1045 |
| 0.0419        | 51.61 | 1600 | 0.7193          | 0.4393 | 0.1028 |
| 0.0365        | 54.84 | 1700 | 0.7231          | 0.4318 | 0.1010 |
| 0.0347        | 58.06 | 1800 | 0.7163          | 0.4302 | 0.1003 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2