--- license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer datasets: - common_voice_16_1 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-upper-sorbian-cz-frozen-2-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_1 type: common_voice_16_1 config: hsb split: test args: hsb metrics: - name: Wer type: wer value: 0.4301780693533271 --- # wav2vec2-large-xls-r-300m-upper-sorbian-cz-frozen-2-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_16_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.7163 - Wer: 0.4302 - Cer: 0.1003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.6172 | 3.23 | 100 | 0.6599 | 0.6999 | 0.1787 | | 0.4414 | 6.45 | 200 | 0.6030 | 0.6251 | 0.1524 | | 0.289 | 9.68 | 300 | 0.5899 | 0.5670 | 0.1336 | | 0.1953 | 12.9 | 400 | 0.6095 | 0.5457 | 0.1308 | | 0.1388 | 16.13 | 500 | 0.6628 | 0.5159 | 0.1224 | | 0.1187 | 19.35 | 600 | 0.7075 | 0.4932 | 0.1180 | | 0.0994 | 22.58 | 700 | 0.7131 | 0.4780 | 0.1143 | | 0.0816 | 25.81 | 800 | 0.6959 | 0.4752 | 0.1101 | | 0.0727 | 29.03 | 900 | 0.7201 | 0.4644 | 0.1104 | | 0.0637 | 32.26 | 1000 | 0.7288 | 0.4630 | 0.1080 | | 0.0592 | 35.48 | 1100 | 0.7219 | 0.4524 | 0.1056 | | 0.0549 | 38.71 | 1200 | 0.7204 | 0.4480 | 0.1041 | | 0.0473 | 41.94 | 1300 | 0.7238 | 0.4470 | 0.1048 | | 0.0412 | 45.16 | 1400 | 0.7109 | 0.4278 | 0.1011 | | 0.0423 | 48.39 | 1500 | 0.7252 | 0.4407 | 0.1045 | | 0.0419 | 51.61 | 1600 | 0.7193 | 0.4393 | 0.1028 | | 0.0365 | 54.84 | 1700 | 0.7231 | 0.4318 | 0.1010 | | 0.0347 | 58.06 | 1800 | 0.7163 | 0.4302 | 0.1003 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2