Baichuan2-13B-Base / modeling_baichuan.py
s-JoL's picture
Update modeling_baichuan.py
0a8cc4e
raw
history blame
32.4 kB
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
from .configuration_baichuan import BaichuanConfig
from .generation_utils import build_chat_input, TextIterStreamer
import math
from threading import Thread
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
from transformers import PreTrainedModel, PretrainedConfig
from transformers.activations import ACT2FN
from transformers.generation.utils import GenerationConfig
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.utils import logging, ContextManagers
import os
from contextlib import contextmanager
from accelerate import init_empty_weights
logger = logging.get_logger(__name__)
try:
from xformers import ops as xops
except ImportError:
xops = None
logger.warning(
"Xformers is not installed correctly. If you want to use memory_efficient_attention to accelerate training use the following command to install Xformers\npip install xformers."
)
def _get_interleave(n):
def _get_interleave_power_of_2(n):
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
ratio = start
return [start * ratio**i for i in range(n)]
if math.log2(n).is_integer():
return _get_interleave_power_of_2(n)
else:
closest_power_of_2 = 2 ** math.floor(math.log2(n))
return (
_get_interleave_power_of_2(closest_power_of_2)
+ _get_interleave(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
)
def _fill_with_neg_inf(t):
"""FP16-compatible function that fills a tensor with -inf."""
return t.float().fill_(float("-inf")).type_as(t)
def _buffered_future_mask(tensor, maxpos, alibi, attn_heads):
_future_mask = torch.triu(_fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1)
_future_mask = _future_mask.unsqueeze(0) + alibi
new_future_mask = _future_mask.to(tensor)
return new_future_mask[: tensor.shape[0] * attn_heads, :maxpos, :maxpos]
def _gen_alibi_mask(tensor, n_head, max_pos):
slopes = torch.Tensor(_get_interleave(n_head))
position_point = torch.arange(max_pos) - max_pos + 1
position_point = position_point.unsqueeze(0).unsqueeze(0).expand(n_head, -1, -1)
diag = torch.diag(position_point[0])
position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(-1, -2)
alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point
alibi = alibi.view(n_head, 1, max_pos)
alibi_mask = torch.triu(_fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1)
alibi_mask = alibi_mask.unsqueeze(0) + alibi
return alibi_mask
class RMSNorm(torch.nn.Module):
def __init__(self, hidden_size, epsilon=1e-6):
super().__init__()
self.weight = torch.nn.Parameter(torch.empty(hidden_size))
self.epsilon = epsilon
def forward(self, hidden_states):
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon)
# convert into half-precision
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
class MLP(torch.nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
):
super().__init__()
self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class BaichuanAttention(torch.nn.Module):
def __init__(self, config: BaichuanConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.max_position_embeddings = config.model_max_length
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}"
)
self.W_pack = torch.nn.Linear(
self.hidden_size, 3 * self.hidden_size, bias=False
)
self.o_proj = torch.nn.Linear(
self.num_heads * self.head_dim, self.hidden_size, bias=False
)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return (
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
.transpose(1, 2)
.contiguous()
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
proj = self.W_pack(hidden_states)
proj = (
proj.unflatten(-1, (3, self.hidden_size))
.unsqueeze(0)
.transpose(0, -2)
.squeeze(-2)
)
query_states = (
proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
)
key_states = (
proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
)
value_states = (
proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
if xops is not None and self.training:
attn_weights = None
# query_states = query_states.transpose(1, 2)
# key_states = key_states.transpose(1, 2)
# value_states = value_states.transpose(1, 2)
# attn_output = xops.memory_efficient_attention(
# query_states, key_states, value_states, attn_bias=attention_mask
# )
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask = attention_mask)
else:
attn_weights = torch.matmul(
query_states, key_states.transpose(2, 3)
) / math.sqrt(self.head_dim)
if attention_mask is not None:
if q_len == 1: # inference with cache
if len(attention_mask.size()) == 4:
attention_mask = attention_mask[:, :, -1:, :]
else:
attention_mask = attention_mask[:, -1:, :]
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
)
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class BaichuanLayer(torch.nn.Module):
def __init__(self, config: BaichuanConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = BaichuanAttention(config=config)
self.mlp = MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
)
self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, epsilon=config.rms_norm_eps
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if use_cache:
outputs += (present_key_value,)
return outputs
class BaichuanPreTrainedModel(PreTrainedModel):
config_class = BaichuanConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["BaichuanLayer"]
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, torch.nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, torch.nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, BaichuanModel):
module.gradient_checkpointing = value
class BaichuanModel(BaichuanPreTrainedModel):
def __init__(self, config: BaichuanConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.n_head = config.num_attention_heads
self.embed_tokens = torch.nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx
)
self.layers = torch.nn.ModuleList(
[BaichuanLayer(config) for _ in range(config.num_hidden_layers)]
)
self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
self.gradient_checkpointing = config.gradient_checkpointing
self.post_init()
self.max_cache_pos = config.model_max_length
self.first_run = True
self.alibi_mask = None
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def get_alibi_mask(self, tensor, seq_length_with_past):
if self.training:
slopes = torch.Tensor(_get_interleave(self.n_head))
position_point = (
torch.arange(seq_length_with_past) - seq_length_with_past + 1
)
position_point = (
position_point.unsqueeze(0)
.unsqueeze(0)
.expand(self.n_head, seq_length_with_past, -1)
)
diag = torch.diag(position_point[0])
position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(
-1, -2
)
alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point
mask = _buffered_future_mask(
tensor, seq_length_with_past, alibi, self.n_head
)
else:
if self.first_run:
self.first_run = False
self.register_buffer(
"future_mask",
_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos).to(
tensor
),
persistent=False,
)
if seq_length_with_past > self.max_cache_pos:
self.max_cache_pos = seq_length_with_past
self.register_buffer(
"future_mask",
_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos).to(
tensor
),
persistent=False,
)
mask = self.future_mask[
: self.n_head, :seq_length_with_past, :seq_length_with_past
]
return mask
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, BaseModelOutputWithPast]:
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot provide both input_ids and inputs_embeds simultaneously"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You need to provide input_ids or inputs_embeds")
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
seq_length_with_past = seq_length
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if self.training:
if (
self.alibi_mask is None
or self.alibi_mask.shape[-1] != seq_length_with_past
):
self.alibi_mask = self.get_alibi_mask(
inputs_embeds, seq_length_with_past
)
alibi_mask = self.alibi_mask
else:
alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
if attention_mask is not None:
if len(attention_mask.shape) == 2:
expanded_mask = attention_mask.to(alibi_mask.dtype)
expanded_mask = torch.tril(
torch.gt(expanded_mask[:, :, None] * expanded_mask[:, None, :], 0)
) * torch.eq(expanded_mask[:, :, None] - expanded_mask[:, None, :], 0)
else:
expanded_mask = attention_mask
bsz = inputs_embeds.size(0)
src_len, tgt_len = alibi_mask.size()[-2:]
expanded_mask = (
expanded_mask.unsqueeze(1)
.expand(bsz, 1, src_len, tgt_len)
.to(alibi_mask.dtype)
)
inverted_mask = 1.0 - expanded_mask
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.finfo(alibi_mask.dtype).min
)
attention_mask = inverted_mask + alibi_mask.unsqueeze(0)
else:
attention_mask = alibi_mask
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = (
past_key_values[idx] if past_key_values is not None else None
)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class NormHead(nn.Module):
def __init__(self, hidden_size, vocab_size, bias=False):
super().__init__()
self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size)))
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
self.first_flag = True
def forward(self, hidden_states):
if self.training:
norm_weight = nn.functional.normalize(self.weight)
elif self.first_flag:
self.first_flag = False
self.weight = nn.Parameter(nn.functional.normalize(self.weight))
norm_weight = self.weight
else:
norm_weight = self.weight
return nn.functional.linear(hidden_states, norm_weight)
_init_weights = True
@contextmanager
def no_init_weights(_enable=True):
global _init_weights
old_init_weights = _init_weights
if _enable:
_init_weights = False
try:
yield
finally:
_init_weights = old_init_weights
class BaichuanForCausalLM(BaichuanPreTrainedModel):
def __init__(self, config, *model_args, **model_kwargs):
super().__init__(config, *model_args, **model_kwargs)
self.model = BaichuanModel(config)
self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False)
#if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
if hasattr(config, "quantization_config") and isinstance(config.quantization_config, dict) and config.quantization_config.get('load_in_4bit', False):
try:
from .quantizer import quantize_offline, init_model_weight_int4
except ImportError:
raise ImportError(f"Needs quantize_offline to run quantize.")
quantize_offline(self, 4)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
*model_args,
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
cache_dir: Optional[Union[str, os.PathLike]] = None,
ignore_mismatched_sizes: bool = False,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[str, bool]] = None,
revision: str = "main",
use_safetensors: bool = None,
**kwargs,
):
# Load config if we don't provide a configuration
if not isinstance(config, PretrainedConfig):
config_path = config if config is not None else pretrained_model_name_or_path
config, model_kwargs = cls.config_class.from_pretrained(
config_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=False,
proxies=None,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder="",
_from_auto=False,
_from_pipeline=None,
**kwargs,
)
else:
model_kwargs = kwargs
if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
try:
from .quantizer import init_model_weight_int4
from accelerate import init_empty_weights, dispatch_model, infer_auto_device_map
from accelerate.utils import CustomDtype
from accelerate.utils import get_balanced_memory
except ImportError:
raise ImportError(f"Needs import model weight init func to run quantize.")
# Instantiate model.
init_contexts = [no_init_weights(_enable=True)]
init_contexts.append(init_empty_weights())
with ContextManagers(init_contexts):
model = cls(config)
model_file = os.path.join(pretrained_model_name_or_path, 'pytorch_model.bin')
state_dict = torch.load(model_file, map_location="cpu")
model.is_quantized = True
device_map = kwargs.pop("device_map", None)
torch_dtype = kwargs.pop("torch_dtype", None)
if device_map is not None:
kwargs = {"no_split_module_classes": model._no_split_modules}
target_dtype = CustomDtype.INT4
max_memory = get_balanced_memory(
model,
dtype=target_dtype,
low_zero=(device_map == "balanced_low_0"),
max_memory=None,
**kwargs,
)
kwargs["max_memory"] = max_memory
device_map = infer_auto_device_map(model, dtype=target_dtype, **kwargs)
model = init_model_weight_int4(config, model, state_dict)
# Set model in evaluation mode to deactivate DropOut modules by default
model.eval()
# If it is a model with generation capabilities, attempt to load the generation config
if model.can_generate():
try:
model.generation_config = GenerationConfig.from_pretrained(
pretrained_model_name_or_path,
cache_dir=cache_dir,
force_download=force_download,
resume_download=False,
proxies=None,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder="",
_from_auto=False,
_from_pipeline=None,
**kwargs,
)
except (OSError, TypeError):
logger.info(
"Generation config file not found, using a generation config created from the model config."
)
pass
if device_map is not None:
dispatch_model(model, device_map=device_map)
return model
return super(BaichuanForCausalLM, cls).from_pretrained(pretrained_model_name_or_path, *model_args,
config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes,
force_download=force_download, local_files_only=local_files_only, token=token, revision=revision,
use_safetensors=use_safetensors, **kwargs)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
softmax_normalizer = shift_logits.max(-1).values ** 2
z_loss = self.config.z_loss_weight * softmax_normalizer.mean()
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels) + z_loss
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def quantize(self, bits: int):
try:
from .quantizer import quantize_online
except ImportError:
raise ImportError(f"Needs QLinear to run quantize.")
return quantize_online(self, bits)
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs,
):
if past_key_values:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
return tuple(
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past)
for layer_past in past_key_values
)
def _build_chat_input(
self, tokenizer, messages: List[dict], max_new_tokens: int = 0
):
max_new_tokens = max_new_tokens or self.generation_config.max_new_tokens
max_input_tokens = self.config.model_max_length - max_new_tokens
max_input_tokens = max(self.config.model_max_length // 2, max_input_tokens)
total_input, round_input = [], []
for i, message in enumerate(messages[::-1]):
content_tokens = tokenizer.encode(message["content"])
if message["role"] == "user":
round_input = (
[self.generation_config.user_token_id]
+ content_tokens
+ round_input
)
if (
total_input
and len(total_input) + len(round_input) > max_input_tokens
):
break
else:
total_input = round_input + total_input
if len(total_input) >= max_input_tokens:
break
else:
round_input = []
elif message["role"] == "assistant":
round_input = (
[self.generation_config.assistant_token_id]
+ content_tokens
+ [self.generation_config.eos_token_id]
+ round_input
)
else:
raise ValueError(f"message role not supported yet: {message['role']}")
total_input = total_input[-max_input_tokens:] # truncate left
total_input.append(self.generation_config.assistant_token_id)
total_input = torch.LongTensor([total_input]).to(self.device)
return total_input
def chat(self, tokenizer, messages: List[dict], stream=False,
generation_config: Optional[GenerationConfig]=None):
generation_config = generation_config or self.generation_config
input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
if stream:
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
Thread(target=self.generate, kwargs=dict(
inputs=input_ids, streamer=streamer,
generation_config=generation_config,
)).start()
return streamer
else:
outputs = self.generate(input_ids, generation_config=generation_config)
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
return response