--- license: apache-2.0 base_model: albert/albert-base-v2 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: albert-base-v2-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.912 - name: F1 type: f1 value: 0.911766000939379 --- # albert-base-v2-finetuned-emotion This model is a fine-tuned version of [albert/albert-base-v2](https://huggingface.co/albert/albert-base-v2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2451 - Accuracy: 0.912 - F1: 0.9118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9011 | 1.0 | 250 | 0.4077 | 0.877 | 0.8776 | | 0.2633 | 2.0 | 500 | 0.2451 | 0.912 | 0.9118 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1