--- base_model: google/gemma-2-2b-it language: - en license: gemma tags: - text-generation-inference - transformers - unsloth - gemma2 datasets: - paraloq/json_data_extraction library_name: peft --- # Gemma-2 2B Instruct fine-tuned on JSON dataset This model is a Gemma-2 2b model fine-tuned to paraloq/json_data_extraction. The model has been fine-tuned to extract data from a text according to a json schema. ## Prompt The prompt used during training is: ```py """Below is a text paired with input that provides further context. Write JSON output that matches the schema to extract information. ### Input: {input} ### Schema: {schema} ### Response: """ ``` ## Using the Model You can use the model with the transformer library or with the wrapper from [unsloth] (https://unsloth.ai/blog/gemma2), which allows faster inference. ```py import torch from unsloth import FastLanguageModel # Required to avoid cache size exceeded torch._dynamo.config.accumulated_cache_size_limit = 2048 model, tokenizer = FastLanguageModel.from_pretrained( model_name = f"bastienp/Gemma-2-2B-it-JSON-data-extration", max_seq_length = 2048, dtype = torch.float16, load_in_4bit = False, token = HF_TOKEN_READ, ) ``` ## Using the Quantized model (llama.cpp) The model is supplied in GGFU format in 4bit and 8bit. Example code with Llamacpp: ```py from llama_cpp import Llama llm = Llama.from_pretrained( "bastienp/Gemma-2-2B-it-JSON-data-extration", filename="*Q4_K_M.gguf", #*Q8_K_M.gguf for the 8 bit version verbose=False, ) ``` The base model used for fine-tuning is google/gemma-2-2b-it. This repository is **NOT** affiliated with Google. Gemma is provided under and subject to the Gemma Terms of Use found at ai.google.dev/gemma/terms. - **Developed by:** bastienp - **License:** gemma - **Finetuned from model :** google/gemma-2-2b-it