File size: 1,764 Bytes
1852aa7 f83bcb2 1852aa7 f83bcb2 1852aa7 f83bcb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
library_name: transformers
tags: []
---
# ELM Llama3-8B-Instruct Model Card
> [**Erasing Conceptual Knoweldge from Language Models**](https://arxiv.org/abs/2410.02760),
> Rohit Gandikota, Sheridan Feucht, Samuel Marks, David Bau
#### How to use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "baulab/elm-Meta-Llama-3-8B-Instruct"
device = 'cuda:0'
dtype = torch.float32
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype)
model = model.to(device)
model.requires_grad_(False)
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
# generate text
inputs = tokenizer(prompt, return_tensors='pt', padding=True)
inputs = inputs.to(device).to(dtype)
outputs = model.generate(**inputs,
max_new_tokens=300,
do_sample=True,
top_p=.95,
temperature=1.2)
outputs = tokenizer.batch_decode(outputs, skip_special_tokens = True)
print(outputs[0])
```
<!-- Provide a quick summary of what the model is/does. -->
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/rohitgandikota/erasing-llm
- **Paper [optional]:** https://arxiv.org/pdf/2410.02760
- **Project [optional]:** https://elm.baulab.info
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```
@article{gandikota2024elm,
title={Erasing Conceptual Knowledge from Language Models},
author={Rohit Gandikota and Sheridan Feucht and Samuel Marks and David Bau},
journal={arXiv preprint arXiv:2410.02760},
year={2024}
}
``` |