--- base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: test_AsymmetricLoss_25K_bs64_P4_N1 results: [] --- # test_AsymmetricLoss_25K_bs64_P4_N1 This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6203 - Accuracy: 0.7448 - Precision: 0.0101 - Recall: 0.2592 - F1: 0.0194 - Hamming: 0.2552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 40 - eval_batch_size: 40 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Hamming | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | 0.6901 | 0.0 | 5 | 0.6457 | 0.6626 | 0.0099 | 0.3394 | 0.0192 | 0.3374 | | 0.6344 | 0.0 | 10 | 0.6203 | 0.7448 | 0.0101 | 0.2592 | 0.0194 | 0.2552 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.7.1 - Tokenizers 0.14.1