burrito-x / main.py
bedrock123's picture
Rename burrito.py to main.py
64564f8
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
import numpy as np
from tensorflow.keras.preprocessing import image
# Define image size and batch size
IMG_SIZE = 224
BATCH_SIZE = 32
# Define train and validation directories
train_dir = 'm2rncvif2arzs1w3q44gfn\images.cv_m2rncvif2arzs1w3q44gfn\data\train\burrito'
val_dir = 'm2rncvif2arzs1w3q44gfn\images.cv_m2rncvif2arzs1w3q44gfn\data\val\burrito'
# Use ImageDataGenerator for data augmentation
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=20,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
val_datagen = ImageDataGenerator(rescale=1./255)
# Generate batches of augmented data from directories
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(IMG_SIZE, IMG_SIZE),
batch_size=BATCH_SIZE,
class_mode='categorical')
val_generator = val_datagen.flow_from_directory(
val_dir,
target_size=(IMG_SIZE, IMG_SIZE),
batch_size=BATCH_SIZE,
class_mode='categorical')
# Define the model architecture
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(IMG_SIZE, IMG_SIZE, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(256, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(2, activation='softmax'))
# Compile the model with categorical crossentropy loss and Adam optimizer
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
# Define the number of training and validation steps per epoch
train_steps_per_epoch = train_generator.samples // BATCH_SIZE
val_steps_per_epoch = val_generator.samples // BATCH_SIZE
# Train the model with fit_generator
history = model.fit_generator(
train_generator,
steps_per_epoch=train_steps_per_epoch,
epochs=10,
validation_data=val_generator,
validation_steps=val_steps_per_epoch)
# Path to directory with burrito images
dir_path = 'm2rncvif2arzs1w3q44gfn\images.cv_m2rncvif2arzs1w3q44gfn\data\test\burrito'
# Loop through all images in the directory
for img_file in os.listdir(dir_path):
# Load and preprocess the image
img_path = os.path.join(dir_path, img_file)
img = image.load_img(img_path, target_size=(IMG_SIZE, IMG_SIZE))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array /= 255.0
# Make a prediction
prediction = model.predict(img_array)
# Print the prediction result
if prediction[0][0] > prediction[0][1]:
print('{}: Not a burrito'.format(img_file))
else:
print('{}: Burrito!'.format(img_file))