beingbatman commited on
Commit
d867726
1 Parent(s): dd5795f

Model save

Browse files
Files changed (2) hide show
  1. README.md +209 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-nc-4.0
4
+ base_model: MCG-NJU/videomae-large-finetuned-kinetics
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: MAE-CT-M1N0-M12_v8_split5_v3
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # MAE-CT-M1N0-M12_v8_split5_v3
18
+
19
+ This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.1517
22
+ - Accuracy: 0.8701
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 1e-05
42
+ - train_batch_size: 4
43
+ - eval_batch_size: 4
44
+ - seed: 42
45
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - training_steps: 10350
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
+ |:-------------:|:--------:|:-----:|:---------------:|:--------:|
54
+ | 0.685 | 0.0068 | 70 | 0.6757 | 0.7792 |
55
+ | 0.5601 | 1.0068 | 140 | 0.6218 | 0.6234 |
56
+ | 0.6632 | 2.0068 | 210 | 0.6157 | 0.6234 |
57
+ | 0.5153 | 3.0068 | 280 | 0.5660 | 0.6364 |
58
+ | 0.5008 | 4.0068 | 350 | 0.5238 | 0.7662 |
59
+ | 0.4879 | 5.0068 | 420 | 0.5012 | 0.7792 |
60
+ | 0.3636 | 6.0068 | 490 | 0.5640 | 0.7013 |
61
+ | 0.7238 | 7.0068 | 560 | 0.5756 | 0.7013 |
62
+ | 0.3339 | 8.0068 | 630 | 0.9895 | 0.6883 |
63
+ | 0.4152 | 9.0068 | 700 | 0.5031 | 0.8182 |
64
+ | 0.3126 | 10.0068 | 770 | 0.5350 | 0.7273 |
65
+ | 0.4479 | 11.0068 | 840 | 0.4278 | 0.8312 |
66
+ | 0.5548 | 12.0068 | 910 | 0.6865 | 0.7013 |
67
+ | 0.1509 | 13.0068 | 980 | 0.8144 | 0.7143 |
68
+ | 0.4038 | 14.0068 | 1050 | 0.6039 | 0.7922 |
69
+ | 0.2748 | 15.0068 | 1120 | 1.1834 | 0.7662 |
70
+ | 0.4552 | 16.0068 | 1190 | 0.7594 | 0.7532 |
71
+ | 0.5584 | 17.0068 | 1260 | 0.9481 | 0.7922 |
72
+ | 0.0919 | 18.0068 | 1330 | 1.0080 | 0.7662 |
73
+ | 0.2309 | 19.0068 | 1400 | 0.8453 | 0.8182 |
74
+ | 0.191 | 20.0068 | 1470 | 1.0695 | 0.7662 |
75
+ | 0.2013 | 21.0068 | 1540 | 1.4657 | 0.7403 |
76
+ | 0.6645 | 22.0068 | 1610 | 1.0602 | 0.8052 |
77
+ | 0.1083 | 23.0068 | 1680 | 1.2148 | 0.7532 |
78
+ | 0.0885 | 24.0068 | 1750 | 1.2008 | 0.7792 |
79
+ | 0.0015 | 25.0068 | 1820 | 1.2987 | 0.7532 |
80
+ | 0.2372 | 26.0068 | 1890 | 1.6225 | 0.7532 |
81
+ | 0.001 | 27.0068 | 1960 | 1.1689 | 0.7662 |
82
+ | 0.0006 | 28.0068 | 2030 | 1.3817 | 0.7532 |
83
+ | 0.0002 | 29.0068 | 2100 | 1.7143 | 0.7273 |
84
+ | 0.0012 | 30.0068 | 2170 | 1.8865 | 0.7273 |
85
+ | 0.153 | 31.0068 | 2240 | 2.4574 | 0.6623 |
86
+ | 0.1308 | 32.0068 | 2310 | 1.1800 | 0.8052 |
87
+ | 0.0002 | 33.0068 | 2380 | 1.2817 | 0.7792 |
88
+ | 0.0001 | 34.0068 | 2450 | 1.2770 | 0.7792 |
89
+ | 0.0001 | 35.0068 | 2520 | 1.2779 | 0.7922 |
90
+ | 0.0001 | 36.0068 | 2590 | 1.3971 | 0.7792 |
91
+ | 0.0001 | 37.0068 | 2660 | 1.1263 | 0.8182 |
92
+ | 0.0001 | 38.0068 | 2730 | 1.1233 | 0.8182 |
93
+ | 0.0675 | 39.0068 | 2800 | 1.4885 | 0.7662 |
94
+ | 0.0002 | 40.0068 | 2870 | 1.8406 | 0.7013 |
95
+ | 0.0001 | 41.0068 | 2940 | 1.9085 | 0.7532 |
96
+ | 0.0005 | 42.0068 | 3010 | 1.9380 | 0.7143 |
97
+ | 0.1589 | 43.0068 | 3080 | 0.9674 | 0.8312 |
98
+ | 0.0001 | 44.0068 | 3150 | 1.5574 | 0.7403 |
99
+ | 0.0353 | 45.0068 | 3220 | 1.1688 | 0.8312 |
100
+ | 0.0001 | 46.0068 | 3290 | 1.7684 | 0.7143 |
101
+ | 0.0002 | 47.0068 | 3360 | 1.3363 | 0.7792 |
102
+ | 0.1237 | 48.0068 | 3430 | 1.2230 | 0.7922 |
103
+ | 0.0001 | 49.0068 | 3500 | 1.4665 | 0.7792 |
104
+ | 0.0 | 50.0068 | 3570 | 1.5472 | 0.7662 |
105
+ | 0.1479 | 51.0068 | 3640 | 2.3369 | 0.7273 |
106
+ | 0.0001 | 52.0068 | 3710 | 2.2529 | 0.6753 |
107
+ | 0.1081 | 53.0068 | 3780 | 1.4745 | 0.7273 |
108
+ | 0.0002 | 54.0068 | 3850 | 1.5813 | 0.7403 |
109
+ | 0.0119 | 55.0068 | 3920 | 1.6007 | 0.7662 |
110
+ | 0.1478 | 56.0068 | 3990 | 2.3310 | 0.7143 |
111
+ | 0.0001 | 57.0068 | 4060 | 1.4788 | 0.8052 |
112
+ | 0.0001 | 58.0068 | 4130 | 1.1851 | 0.8442 |
113
+ | 0.0001 | 59.0068 | 4200 | 1.1920 | 0.8571 |
114
+ | 0.0904 | 60.0068 | 4270 | 1.1858 | 0.8312 |
115
+ | 0.0001 | 61.0068 | 4340 | 1.4534 | 0.7662 |
116
+ | 0.0017 | 62.0068 | 4410 | 1.6716 | 0.7792 |
117
+ | 0.0001 | 63.0068 | 4480 | 2.2017 | 0.6883 |
118
+ | 0.3407 | 64.0068 | 4550 | 1.2424 | 0.8052 |
119
+ | 0.0001 | 65.0068 | 4620 | 1.5786 | 0.7792 |
120
+ | 0.0002 | 66.0068 | 4690 | 1.3379 | 0.8182 |
121
+ | 0.0005 | 67.0068 | 4760 | 1.1517 | 0.8701 |
122
+ | 0.0 | 68.0068 | 4830 | 1.5294 | 0.7792 |
123
+ | 0.0 | 69.0068 | 4900 | 2.4381 | 0.6883 |
124
+ | 0.0032 | 70.0068 | 4970 | 1.7952 | 0.7532 |
125
+ | 0.0 | 71.0068 | 5040 | 3.0253 | 0.6753 |
126
+ | 0.214 | 72.0068 | 5110 | 1.9327 | 0.7143 |
127
+ | 0.0 | 73.0068 | 5180 | 2.0236 | 0.7532 |
128
+ | 0.0 | 74.0068 | 5250 | 1.9076 | 0.7662 |
129
+ | 0.0 | 75.0068 | 5320 | 1.7070 | 0.8052 |
130
+ | 0.0003 | 76.0068 | 5390 | 1.8621 | 0.7532 |
131
+ | 0.0 | 77.0068 | 5460 | 1.8847 | 0.7662 |
132
+ | 0.0 | 78.0068 | 5530 | 1.8880 | 0.7662 |
133
+ | 0.0001 | 79.0068 | 5600 | 1.8182 | 0.7792 |
134
+ | 0.0 | 80.0068 | 5670 | 1.7965 | 0.8052 |
135
+ | 0.0001 | 81.0068 | 5740 | 3.0536 | 0.6753 |
136
+ | 0.0005 | 82.0068 | 5810 | 1.5427 | 0.7922 |
137
+ | 0.0006 | 83.0068 | 5880 | 1.8892 | 0.7403 |
138
+ | 0.0001 | 84.0068 | 5950 | 1.9648 | 0.7403 |
139
+ | 0.0 | 85.0068 | 6020 | 1.7625 | 0.7532 |
140
+ | 0.1655 | 86.0068 | 6090 | 1.6751 | 0.7662 |
141
+ | 0.0 | 87.0068 | 6160 | 1.8559 | 0.7403 |
142
+ | 0.0 | 88.0068 | 6230 | 1.8886 | 0.7532 |
143
+ | 0.0 | 89.0068 | 6300 | 1.8957 | 0.7532 |
144
+ | 0.0 | 90.0068 | 6370 | 1.8181 | 0.7662 |
145
+ | 0.0 | 91.0068 | 6440 | 1.8299 | 0.7532 |
146
+ | 0.0 | 92.0068 | 6510 | 1.5186 | 0.8182 |
147
+ | 0.0393 | 93.0068 | 6580 | 1.9234 | 0.7792 |
148
+ | 0.0 | 94.0068 | 6650 | 2.1199 | 0.7273 |
149
+ | 0.0 | 95.0068 | 6720 | 2.1309 | 0.7403 |
150
+ | 0.0009 | 96.0068 | 6790 | 1.9311 | 0.7532 |
151
+ | 0.0001 | 97.0068 | 6860 | 1.7858 | 0.7792 |
152
+ | 0.0894 | 98.0068 | 6930 | 1.5577 | 0.8052 |
153
+ | 0.0 | 99.0068 | 7000 | 1.8138 | 0.7792 |
154
+ | 0.0 | 100.0068 | 7070 | 2.0068 | 0.7532 |
155
+ | 0.0163 | 101.0068 | 7140 | 1.8340 | 0.7922 |
156
+ | 0.0 | 102.0068 | 7210 | 1.3226 | 0.8312 |
157
+ | 0.0 | 103.0068 | 7280 | 2.4607 | 0.7532 |
158
+ | 0.0683 | 104.0068 | 7350 | 1.7550 | 0.7922 |
159
+ | 0.0 | 105.0068 | 7420 | 1.4900 | 0.8312 |
160
+ | 0.0 | 106.0068 | 7490 | 1.5684 | 0.7662 |
161
+ | 0.0 | 107.0068 | 7560 | 1.7333 | 0.8052 |
162
+ | 0.0 | 108.0068 | 7630 | 1.4233 | 0.7922 |
163
+ | 0.0001 | 109.0068 | 7700 | 1.7542 | 0.7792 |
164
+ | 0.0 | 110.0068 | 7770 | 1.4554 | 0.8052 |
165
+ | 0.0 | 111.0068 | 7840 | 1.3538 | 0.8571 |
166
+ | 0.0 | 112.0068 | 7910 | 1.4165 | 0.8571 |
167
+ | 0.0 | 113.0068 | 7980 | 1.4229 | 0.8571 |
168
+ | 0.0 | 114.0068 | 8050 | 1.4191 | 0.8571 |
169
+ | 0.0 | 115.0068 | 8120 | 1.4364 | 0.8571 |
170
+ | 0.0 | 116.0068 | 8190 | 1.4575 | 0.8312 |
171
+ | 0.0 | 117.0068 | 8260 | 1.4640 | 0.8312 |
172
+ | 0.0 | 118.0068 | 8330 | 1.4807 | 0.8312 |
173
+ | 0.0 | 119.0068 | 8400 | 1.5030 | 0.8312 |
174
+ | 0.0 | 120.0068 | 8470 | 1.5188 | 0.8312 |
175
+ | 0.0 | 121.0068 | 8540 | 1.5642 | 0.8182 |
176
+ | 0.0 | 122.0068 | 8610 | 1.5663 | 0.8182 |
177
+ | 0.0 | 123.0068 | 8680 | 1.5686 | 0.8182 |
178
+ | 0.0 | 124.0068 | 8750 | 1.4284 | 0.8571 |
179
+ | 0.0 | 125.0068 | 8820 | 1.4352 | 0.8571 |
180
+ | 0.0 | 126.0068 | 8890 | 1.4392 | 0.8571 |
181
+ | 0.0 | 127.0068 | 8960 | 1.5200 | 0.8442 |
182
+ | 0.0 | 128.0068 | 9030 | 1.5244 | 0.8442 |
183
+ | 0.0 | 129.0068 | 9100 | 1.5282 | 0.8442 |
184
+ | 0.0 | 130.0068 | 9170 | 1.5338 | 0.8442 |
185
+ | 0.0 | 131.0068 | 9240 | 1.5489 | 0.8442 |
186
+ | 0.0 | 132.0068 | 9310 | 1.5530 | 0.8442 |
187
+ | 0.0 | 133.0068 | 9380 | 1.5586 | 0.8442 |
188
+ | 0.0 | 134.0068 | 9450 | 1.5642 | 0.8442 |
189
+ | 0.0 | 135.0068 | 9520 | 1.5596 | 0.8442 |
190
+ | 0.0 | 136.0068 | 9590 | 1.5681 | 0.8442 |
191
+ | 0.0 | 137.0068 | 9660 | 1.4498 | 0.8182 |
192
+ | 0.0 | 138.0068 | 9730 | 1.6159 | 0.8312 |
193
+ | 0.0 | 139.0068 | 9800 | 1.6950 | 0.8182 |
194
+ | 0.0 | 140.0068 | 9870 | 1.6978 | 0.8182 |
195
+ | 0.0 | 141.0068 | 9940 | 1.6985 | 0.8182 |
196
+ | 0.0 | 142.0068 | 10010 | 1.6995 | 0.8182 |
197
+ | 0.0 | 143.0068 | 10080 | 1.7037 | 0.8052 |
198
+ | 0.0 | 144.0068 | 10150 | 1.7056 | 0.8052 |
199
+ | 0.0 | 145.0068 | 10220 | 1.7054 | 0.8052 |
200
+ | 0.0 | 146.0068 | 10290 | 1.7054 | 0.8052 |
201
+ | 0.0 | 147.0058 | 10350 | 1.7041 | 0.8052 |
202
+
203
+
204
+ ### Framework versions
205
+
206
+ - Transformers 4.46.2
207
+ - Pytorch 2.0.1+cu117
208
+ - Datasets 3.0.1
209
+ - Tokenizers 0.20.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a57784ad46435bdd32ed89d3c9583358a4e427b1ac0f2a1159ecbe7b06ef33de
3
  size 1215496208
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e5d0e57a1528802c801ab3fbed49431f8417c6342baf5bb1ee5338ae974f101
3
  size 1215496208