File size: 1,457 Bytes
c88ff5d 90ac271 c88ff5d 35d609f c88ff5d abd8691 c88ff5d 7390cd6 c88ff5d 2c21f45 746644f 2c21f45 746644f 8746847 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
base_model:
- Qwen/Qwen2.5-3B-Instruct
tags:
- text-generation-inference
- transformers
- qwen2
- trl
- sft
license: apache-2.0
language:
- en
datasets:
- beyoru/Tin_hoc_mcq
---
# Uploaded model
- **Developed by:** beyoru
- **License:** apache-2.0
# Usage
```
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "beyoru/MCQ-3B-o-16"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [
{"role": "system", "content": "Tạo câu hỏi trắc nghiệm dựa vào đoạn văn dưới đây"},
{"role": "user", "content": "<YOUR CONTEXT>"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
do_sample=True
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
# Notes:
- For small datasets with narrow content which the model already has well, and doesn't want the model to forget the knowledge by focusing on o.
- Fine-tuned lora with rank = 16 and alpha = 32, epoch = 1
# Improvement
- Increasing rank can help the model do better at robust structure. |