File size: 21,878 Bytes
e0ce9da 6772214 233b3e5 5b8e1c5 e0ce9da 5b8e1c5 e0ce9da 48d18d9 e0ce9da 233b3e5 e0ce9da 093dabc e0ce9da 89cb0cd e0ce9da a067486 e0ce9da d18e04e e0ce9da 233b3e5 e0ce9da 1ba7ab7 e0ce9da 233b3e5 e0ce9da a067486 e0ce9da d18e04e e0ce9da 4b21f51 e0ce9da 48d18d9 e0ce9da 233b3e5 e0ce9da 48d18d9 e0ce9da d18e04e e0ce9da 093dabc e0ce9da 659328e e0ce9da 233b3e5 e0ce9da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
---
license: other
base_model: "stabilityai/stable-diffusion-3.5-medium"
tags:
- sd3
- sd3-diffusers
- text-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_0_0.png
- text: 'Alien planet, strange rock formations, glowing plants, bizarre creatures, surreal atmosphere'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_1_0.png
- text: 'Alien marketplace, bizarre creatures, exotic goods, vibrant colors, otherworldly atmosphere'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_2_0.png
- text: 'Child holding a balloon, happy expression, colorful balloons, sunny day, high detail'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_3_0.png
- text: 'a 4-panel comic strip showing an orange cat saying the words ''HELP'' and ''LASAGNA'''
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_4_0.png
- text: 'a hand is holding a comic book with a cover that reads ''The Adventures of Superhero'''
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_5_0.png
- text: 'Underground cave filled with crystals, glowing lights, reflective surfaces, fantasy environment, high detail'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_6_0.png
- text: 'Bustling cyberpunk bazaar, vendors, neon signs, advanced tech, crowded, high detail'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_7_0.png
- text: 'Cyberpunk hacker in a dark room, neon glow, multiple screens, intense focus, high detail'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_8_0.png
- text: 'a cybernetic anne of green gables with neural implant and bio mech augmentations'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_9_0.png
- text: 'Post-apocalyptic cityscape, ruined buildings, overgrown vegetation, dark and gritty, high detail'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_10_0.png
- text: 'Magical castle in a lush forest, glowing windows, fantasy architecture, high resolution, detailed textures'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_11_0.png
- text: 'Ruins of an ancient temple in an enchanted forest, glowing runes, mystical creatures, high detail'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_12_0.png
- text: 'Mystical forest, glowing plants, fairies, magical creatures, fantasy art, high detail'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_13_0.png
- text: 'Magical garden with glowing flowers, fairies, serene atmosphere, detailed plants, high resolution'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_14_0.png
- text: 'Whimsical garden filled with fairies, magical plants, sparkling lights, serene atmosphere, high detail'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_15_0.png
- text: 'Majestic dragon soaring through the sky, detailed scales, dynamic pose, fantasy art, high resolution'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_16_0.png
- text: 'Fantasy world, floating islands in the sky, waterfalls, lush vegetation, detailed landscape, high resolution'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_17_0.png
- text: 'Futuristic city skyline at night, neon lights, cyberpunk style, high contrast, sharp focus'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_18_0.png
- text: 'Space battle scene, starships fighting, laser beams, explosions, cosmic background'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_19_0.png
- text: 'Abandoned fairground at night, eerie rides, ghostly figures, fog, dark atmosphere, high detail'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_20_0.png
- text: 'Spooky haunted mansion on a hill, dark and eerie, glowing windows, ghostly atmosphere, high detail'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_21_0.png
- text: 'a hardcover physics textbook that is called PHYSICS FOR DUMMIES'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_22_0.png
- text: 'Epic medieval battle, knights in armor, dynamic action, detailed landscape, high resolution'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_23_0.png
- text: 'Bustling medieval market with merchants, knights, and jesters, vibrant colors, detailed'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_24_0.png
- text: 'Cozy medieval tavern, warm firelight, adventurers drinking, detailed interior, rustic atmosphere'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_25_0.png
- text: 'Futuristic city skyline at night, neon lights, cyberpunk style, high contrast, sharp focus'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_26_0.png
- text: 'Forest with neon-lit trees, glowing plants, bioluminescence, surreal atmosphere, high detail'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_27_0.png
- text: 'Bright neon sign in a busy city street, ''Open 24 Hours'', bold typography, glowing lights'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_28_0.png
- text: 'Vibrant neon sign, ''Bar'', bold typography, dark background, glowing lights, detailed design'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_29_0.png
- text: 'Pirate ship on the high seas, stormy weather, detailed sails, dramatic waves, photorealistic'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_30_0.png
- text: 'Pirate discovering a treasure chest, detailed gold coins, tropical island, dramatic lighting'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_31_0.png
- text: 'a photograph of a woman experiencing a psychedelic trip. trippy, 8k, uhd, fractal'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_32_0.png
- text: 'Cozy cafe on a rainy day, people sipping coffee, warm lights, reflections on wet pavement, photorealistic'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_33_0.png
- text: '1980s arcade, neon lights, vintage game machines, kids playing, vibrant colors, nostalgic atmosphere'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_34_0.png
- text: '1980s game room with vintage arcade machines, neon lights, vibrant colors, nostalgic feel'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_35_0.png
- text: 'Robot blacksmith forging metal, sparks flying, detailed workshop, futuristic and medieval blend'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_36_0.png
- text: 'Sleek robot performing a dance, futuristic theater, holographic effects, detailed, high resolution'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_37_0.png
- text: 'High-tech factory where robots are assembled, detailed machinery, futuristic setting, high detail'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_38_0.png
- text: 'Garden tended by robots, mechanical plants, colorful flowers, futuristic setting, high detail'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_39_0.png
- text: 'Cute robotic pet, futuristic home, sleek design, detailed features, friendly and animated'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_40_0.png
- text: 'cctv trail camera night time security picture of a wendigo in the woods'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_41_0.png
- text: 'Astronaut exploring an alien planet, detailed landscape, futuristic suit, cosmic background'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_42_0.png
- text: 'Futuristic space station orbiting a distant exoplanet, sleek design, detailed structures, cosmic backdrop'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_43_0.png
- text: 'a person holding a sign that reads ''SOON'''
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_44_0.png
- text: 'Steampunk airship in the sky, intricate design, Victorian aesthetics, dynamic scene, high detail'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_45_0.png
- text: 'Steampunk inventor in a workshop, intricate gadgets, Victorian attire, mechanical arm, goggles'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_46_0.png
- text: 'Stormy ocean with towering waves, dramatic skies, detailed water, intense atmosphere, high resolution'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_47_0.png
- text: 'Dramatic stormy sea, lighthouse in the distance, lightning striking, dark clouds, high detail'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_48_0.png
- text: 'Graffiti artist creating a mural, vibrant colors, urban setting, dynamic action, high resolution'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_49_0.png
- text: 'Urban alleyway filled with vibrant graffiti art, tags and murals, realistic textures'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_50_0.png
- text: 'Urban street sign, ''Main Street'', bold typography, realistic textures, weathered look'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_51_0.png
- text: 'Classic car show with vintage vehicles, vibrant colors, nostalgic atmosphere, high detail'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_52_0.png
- text: 'Retro diner sign, ''Joe''s Diner'', classic 1950s design, neon lights, weathered look'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_53_0.png
- text: 'Vintage store sign with elaborate typography, ''Antique Shop'', hand-painted, weathered look'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_54_0.png
- text: 'A photo-realistic image of a cat'
parameters:
negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average'
output:
url: ./assets/image_55_0.png
---
# sd35m-photo-clip_value-shift3
This is a LyCORIS adapter derived from [stabilityai/stable-diffusion-3.5-medium](https://huggingface.co/stabilityai/stable-diffusion-3.5-medium).
The main validation prompt used during training was:
```
A photo-realistic image of a cat
```
## Validation settings
- CFG: `6.0`
- CFG Rescale: `0.0`
- Steps: `30`
- Sampler: `FlowMatchEulerDiscreteScheduler`
- Seed: `42`
- Resolution: `1024x1024`
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 2
- Training steps: 322000
- Learning rate: 5e-05
- Learning rate schedule: constant
- Warmup steps: 500
- Max grad norm: 1.0
- Effective batch size: 12
- Micro-batch size: 4
- Gradient accumulation steps: 1
- Number of GPUs: 3
- Gradient checkpointing: True
- Prediction type: flow-matching (extra parameters=['shift=3.0'])
- Optimizer: bnb-adamw8bit
- Trainable parameter precision: Pure BF16
- Caption dropout probability: 10.0%
### LyCORIS Config:
```json
{
"bypass_mode": true,
"algo": "lokr",
"multiplier": 1.0,
"full_matrix": true,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 4,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"FeedForward": {
"factor": 4
},
"Attention": {
"factor": 2
}
}
}
}
```
## Datasets
### text-1mp
- Repeats: 100
- Total number of images: ~13221
- Total number of aspect buckets: 2
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### signs
- Repeats: 150
- Total number of images: ~420
- Total number of aspect buckets: 14
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### moviecollection
- Repeats: 0
- Total number of images: ~1983
- Total number of aspect buckets: 13
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### bookcovers
- Repeats: 0
- Total number of images: ~927
- Total number of aspect buckets: 24
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### shutterstock
- Repeats: 0
- Total number of images: ~21111
- Total number of aspect buckets: 30
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### cinemamix-1mp
- Repeats: 0
- Total number of images: ~7425
- Total number of aspect buckets: 3
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### anatomy
- Repeats: 5
- Total number of images: ~16440
- Total number of aspect buckets: 4
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### signs-512
- Repeats: 0
- Total number of images: ~417
- Total number of aspect buckets: 11
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### moviecollection-512
- Repeats: 0
- Total number of images: ~1971
- Total number of aspect buckets: 6
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### bookcovers-512
- Repeats: 0
- Total number of images: ~918
- Total number of aspect buckets: 9
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### shutterstock-512
- Repeats: 0
- Total number of images: ~21096
- Total number of aspect buckets: 18
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### cinemamix-1mp-512
- Repeats: 0
- Total number of images: ~7422
- Total number of aspect buckets: 3
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### anatomy-512
- Repeats: 5
- Total number of images: ~16437
- Total number of aspect buckets: 4
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### signs-1440
- Repeats: 100
- Total number of images: ~423
- Total number of aspect buckets: 25
- Resolution: 2.0736 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### moviecollection-1440
- Repeats: 0
- Total number of images: ~2007
- Total number of aspect buckets: 35
- Resolution: 2.0736 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### bookcovers-1440
- Repeats: 0
- Total number of images: ~933
- Total number of aspect buckets: 22
- Resolution: 2.0736 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### shutterstock-1440
- Repeats: 0
- Total number of images: ~21111
- Total number of aspect buckets: 37
- Resolution: 2.0736 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### cinemamix-1mp-1440
- Repeats: 0
- Total number of images: ~7425
- Total number of aspect buckets: 3
- Resolution: 2.0736 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### anatomy-1440
- Repeats: 5
- Total number of images: ~16458
- Total number of aspect buckets: 4
- Resolution: 2.0736 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
## Inference
```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
def download_adapter(repo_id: str):
import os
from huggingface_hub import hf_hub_download
adapter_filename = "pytorch_lora_weights.safetensors"
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
os.makedirs(path_to_adapter, exist_ok=True)
hf_hub_download(
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
)
return path_to_adapter_file
model_id = 'stabilityai/stable-diffusion-3.5-medium'
adapter_repo_id = 'bghira/sd35m-photo-clip_value-shift3'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()
prompt = "A photo-realistic image of a cat"
negative_prompt = 'ugly, cropped, blurry, low-quality, mediocre average'
## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=30,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=6.0,
).images[0]
image.save("output.png", format="PNG")
```
## Exponential Moving Average (EMA)
SimpleTuner generates a safetensors variant of the EMA weights and a pt file.
The safetensors file is intended to be used for inference, and the pt file is for continuing finetuning.
The EMA model may provide a more well-rounded result, but typically will feel undertrained compared to the full model as it is a running decayed average of the model weights.
|