--- license: creativeml-openrail-m base_model: "ptx0/terminus-xl-velocity-v2" tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - simpletuner - full inference: true widget: - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_0_0.png - text: 'two young girls in a classroom setting appearing surprised or concerned' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_1_0.png --- # smoldit-base-test This is a full rank finetune derived from [ptx0/terminus-xl-velocity-v2](https://huggingface.co/ptx0/terminus-xl-velocity-v2). The main validation prompt used during training was: ``` two young girls in a classroom setting appearing surprised or concerned ``` ## Validation settings - CFG: `4.0` - CFG Rescale: `0.7` - Steps: `30` - Sampler: `ddpm` - Seed: `420420420` - Resolution: `256` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 360 - Training steps: 167000 - Learning rate: 1e-05 - Effective batch size: 16 - Micro-batch size: 16 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Prediction type: v_prediction - Rescaled betas zero SNR: True - Optimizer: AdamW, stochastic bf16 - Precision: Pure BF16 - Xformers: Enabled ## Datasets ### cinemamix-1mp - Repeats: 0 - Total number of images: 7408 - Total number of aspect buckets: 1 - Resolution: 256 px - Cropped: True - Crop style: center - Crop aspect: square ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'smoldit-base-test' pipeline = DiffusionPipeline.from_pretrained(model_id) prompt = "two young girls in a classroom setting appearing surprised or concerned" negative_prompt = "blurry, cropped, ugly" pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, negative_prompt='blurry, cropped, ugly', num_inference_steps=30, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1152, height=768, guidance_scale=4.0, guidance_rescale=0.7, ).images[0] image.save("output.png", format="PNG") ```