--- license: creativeml-openrail-m base_model: "segmind/SSD-1B" tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - full inference: true --- # terminus-xl-refiner This is a full rank finetune derived from [segmind/SSD-1B](https://huggingface.co/segmind/SSD-1B). The main validation prompt used during training was: ``` a cute anime character named toast ``` ## Validation settings - CFG: `7.5` - CFG Rescale: `0.7` - Steps: `30` - Sampler: `ddpm` - Seed: `420420420` - Resolution: `1024` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 0 - Training steps: 12800 - Learning rate: 2e-06 - Effective batch size: 16 - Micro-batch size: 4 - Gradient accumulation steps: 4 - Number of GPUs: 1 - Prediction type: v_prediction - Rescaled betas zero SNR: True - Optimizer: AdamW, stochastic bf16 - Precision: Pure BF16 - Xformers: Enabled ## Datasets ### pixel-art - Repeats: 0 - Total number of images: 1040 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### signs - Repeats: 0 - Total number of images: 368 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### experimental - Repeats: 0 - Total number of images: 3024 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### ethnic - Repeats: 0 - Total number of images: 3072 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### sports - Repeats: 0 - Total number of images: 784 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### architecture - Repeats: 0 - Total number of images: 4336 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### shutterstock - Repeats: 0 - Total number of images: 21072 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### cinemamix-1mp - Repeats: 0 - Total number of images: 9008 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### nsfw-1024 - Repeats: 0 - Total number of images: 10800 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### anatomy - Repeats: 5 - Total number of images: 16417 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### yoga - Repeats: 0 - Total number of images: 3600 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### photo-aesthetics - Repeats: 0 - Total number of images: 33136 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### text-1mp - Repeats: 5 - Total number of images: 13170 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ### photo-concept-bucket - Repeats: 0 - Total number of images: 567554 - Total number of aspect buckets: 3 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: random ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = "terminus-xl-refiner" prompt = "a cute anime character named toast" negative_prompt = "malformed, disgusting, overexposed, washed-out" pipeline = DiffusionPipeline.from_pretrained(model_id) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, negative_prompt='blurry, cropped, ugly', num_inference_steps=30, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1152, height=768, guidance_scale=7.5, guidance_rescale=0.7, ).images[0] image.save("output.png", format="PNG") ```