File size: 2,412 Bytes
b931b78 fc6449c f471009 fc6449c a47bc74 b931b78 62261e6 fc6449c 0a788ce fc6449c f471009 fc6449c f471009 fc6449c a47bc74 fc6449c 19eb6e2 dc2ce66 f471009 0a788ce 6cfff2b 0a788ce fc6449c 0a788ce fc6449c 62261e6 fc6449c 62261e6 757a5ed 0a788ce 757a5ed 23fd1a9 fec91dc 19eb6e2 fec91dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: creativeml-openrail-m
base_model: "ptx0/terminus-xl-velocity-v2"
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- full
inference: true
---
# terminus-xl-velocity-training
This is a full rank finetune derived from [ptx0/terminus-xl-velocity-v2](https://huggingface.co/ptx0/terminus-xl-velocity-v2).
The main validation prompt used during training was:
```
a cute anime character named toast holding a sign that says SOON, sitting next to a red square on her left side, and a transparent sphere on her right side
```
## Validation settings
- CFG: `7.5`
- CFG Rescale: `0.7`
- Steps: `30`
- Sampler: `euler`
- Seed: `42`
- Resolutions: `1024x1024,1152x960,896x1152`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 7
- Training steps: 16800
- Learning rate: 4e-07
- Effective batch size: 512
- Micro-batch size: 32
- Gradient accumulation steps: 2
- Number of GPUs: 8
- Prediction type: v_prediction
- Rescaled betas zero SNR: True
- Optimizer: AdamW, stochastic bf16
- Precision: Pure BF16
- Xformers: Enabled
## Datasets
### photo-concept-bucket
- Repeats: 0
- Total number of images: ~557568
- Total number of aspect buckets: 5
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random
## Inference
```python
import torchfrom diffusers import DiffusionPipeline
model_id = "terminus-xl-velocity-training"
prompt = "a cute anime character named toast holding a sign that says SOON, sitting next to a red square on her left side, and a transparent sphere on her right side"
negative_prompt = "malformed, disgusting, overexposed, washed-out"
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
negative_prompt='',
num_inference_steps=30,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1152,
height=768,
guidance_scale=7.5,
guidance_rescale=0.7,
).images[0]
image.save(f"output.png", format="PNG")
```
|