File size: 2,412 Bytes
b931b78
fc6449c
f471009
fc6449c
 
 
 
 
 
 
 
a47bc74
b931b78
62261e6
fc6449c
 
0a788ce
fc6449c
 
 
 
f471009
fc6449c
 
 
 
 
 
 
f471009
fc6449c
 
 
 
a47bc74
fc6449c
 
 
 
 
 
 
 
 
 
19eb6e2
dc2ce66
f471009
0a788ce
6cfff2b
 
0a788ce
fc6449c
 
 
 
0a788ce
fc6449c
62261e6
fc6449c
62261e6
757a5ed
 
0a788ce
 
757a5ed
 
 
 
23fd1a9
fec91dc
 
 
 
 
19eb6e2
 
fec91dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
license: creativeml-openrail-m
base_model: "ptx0/terminus-xl-velocity-v2"
tags:
  - stable-diffusion
  - stable-diffusion-diffusers
  - text-to-image
  - diffusers
  - full

inference: true

---

# terminus-xl-velocity-training

This is a full rank finetune derived from [ptx0/terminus-xl-velocity-v2](https://huggingface.co/ptx0/terminus-xl-velocity-v2).

The main validation prompt used during training was:

```
a cute anime character named toast holding a sign that says SOON, sitting next to a red square on her left side, and a transparent sphere on her right side
```

## Validation settings
- CFG: `7.5`
- CFG Rescale: `0.7`
- Steps: `30`
- Sampler: `euler`
- Seed: `42`
- Resolutions: `1024x1024,1152x960,896x1152`

Note: The validation settings are not necessarily the same as the [training settings](#training-settings).




<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 7
- Training steps: 16800
- Learning rate: 4e-07
- Effective batch size: 512
  - Micro-batch size: 32
  - Gradient accumulation steps: 2
  - Number of GPUs: 8
- Prediction type: v_prediction
- Rescaled betas zero SNR: True
- Optimizer: AdamW, stochastic bf16
- Precision: Pure BF16
- Xformers: Enabled


## Datasets

### photo-concept-bucket
- Repeats: 0
- Total number of images: ~557568
- Total number of aspect buckets: 5
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: random


## Inference


```python
import torchfrom diffusers import DiffusionPipeline


model_id = "terminus-xl-velocity-training"
prompt = "a cute anime character named toast holding a sign that says SOON, sitting next to a red square on her left side, and a transparent sphere on her right side"
negative_prompt = "malformed, disgusting, overexposed, washed-out"

pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    negative_prompt='',
    num_inference_steps=30,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1152,
    height=768,
    guidance_scale=7.5,
    guidance_rescale=0.7,
).images[0]
image.save(f"output.png", format="PNG")
```