bhadresh-savani commited on
Commit
b1f9416
1 Parent(s): 668f3dc

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ thumbnail: https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4
5
+ tags:
6
+ - text-classification
7
+ - emotion
8
+ - pytorch
9
+ license: apache-2.0
10
+ datasets:
11
+ - emotion
12
+ metrics:
13
+ - Accuracy, F1 Score
14
+ ---
15
+ # Albert-base-v2-emotion
16
+
17
+ ## Model description:
18
+ [Albert](https://arxiv.org/pdf/1909.11942v6.pdf) is A Lite BERT architecture that has significantly fewer parameters than a traditional BERT architecture.
19
+
20
+ `Albert-base-v2` finetuned on the emotion dataset using HuggingFace Trainer with below Hyperparameters
21
+ ```
22
+ learning rate 2e-5,
23
+ batch size 64,
24
+ num_train_epochs=8,
25
+ ```
26
+
27
+ ## Model Performance Comparision on Emotion Dataset from Twitter:
28
+
29
+ | Model | Accuracy | F1 Score | Test Sample per Second |
30
+ | --- | --- | --- | --- |
31
+ | [Distilbert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion) | 93.8 | 93.79 | 398.69 |
32
+ | [Bert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/bert-base-uncased-emotion) | 94.05 | 94.06 | 190.152 |
33
+ | [Roberta-base-emotion](https://huggingface.co/bhadresh-savani/roberta-base-emotion) | 93.95 | 93.97| 195.639 |
34
+ | [Albert-base-v2-emotion](https://huggingface.co/bhadresh-savani/albert-base-v2-emotion) | 93.6 | 93.65 | 182.794 |
35
+
36
+ ## How to Use the model:
37
+ ```python
38
+ from transformers import pipeline
39
+ classifier = pipeline("text-classification",model='bhadresh-savani/albert-base-v2-emotion', return_all_scores=True)
40
+ prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use", )
41
+ print(prediction)
42
+
43
+ """
44
+ Output:
45
+ [[
46
+ {'label': 'sadness', 'score': 0.0006792712374590337},
47
+ {'label': 'joy', 'score': 0.9959300756454468},
48
+ {'label': 'love', 'score': 0.0009452480007894337},
49
+ {'label': 'anger', 'score': 0.0018055217806249857},
50
+ {'label': 'fear', 'score': 0.00041110432357527316},
51
+ {'label': 'surprise', 'score': 0.0002288572577526793}
52
+ ]]
53
+ """
54
+ ```
55
+
56
+ ## Dataset:
57
+ [Twitter-Sentiment-Analysis](https://huggingface.co/nlp/viewer/?dataset=emotion).
58
+
59
+ ## Training procedure
60
+ [Colab Notebook](https://github.com/bhadreshpsavani/ExploringSentimentalAnalysis/blob/main/SentimentalAnalysisWithDistilbert.ipynb)
61
+
62
+ ## Eval results
63
+ ```json
64
+ {'test_accuracy': 0.936,
65
+ 'test_f1': 0.9365658988006296,
66
+ 'test_loss': 0.15278364717960358,
67
+ 'test_runtime': 10.9413,
68
+ 'test_samples_per_second': 182.794,
69
+ 'test_steps_per_second': 2.925}
70
+ ```
71
+
72
+ ## Reference:
73
+ * [Natural Language Processing with Transformer By Lewis Tunstall, Leandro von Werra, Thomas Wolf](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/)