bert-base-uncased-emotion
Model description:
Bert is a Transformer Bidirectional Encoder based Architecture trained on MLM(Mask Language Modeling) objective
bert-base-uncased finetuned on the emotion dataset using HuggingFace Trainer with below training parameters
learning rate 2e-5,
batch size 64,
num_train_epochs=8,
Model Performance Comparision on Emotion Dataset from Twitter:
Model | Accuracy | F1 Score | Test Sample per Second |
---|---|---|---|
Distilbert-base-uncased-emotion | 93.8 | 93.79 | 398.69 |
Bert-base-uncased-emotion | 94.05 | 94.06 | 190.152 |
Roberta-base-emotion | 93.95 | 93.97 | 195.639 |
Albert-base-v2-emotion | 93.6 | 93.65 | 182.794 |
How to Use the model:
from transformers import pipeline
classifier = pipeline("text-classification",model='bhadresh-savani/bert-base-uncased-emotion', return_all_scores=True)
prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use", )
print(prediction)
"""
output:
[[
{'label': 'sadness', 'score': 0.0005138228880241513},
{'label': 'joy', 'score': 0.9972520470619202},
{'label': 'love', 'score': 0.0007443308713845909},
{'label': 'anger', 'score': 0.0007404946954920888},
{'label': 'fear', 'score': 0.00032938539516180754},
{'label': 'surprise', 'score': 0.0004197491507511586}
]]
"""
Dataset:
Training procedure
Colab Notebook follow the above notebook by changing the model name from distilbert to bert
Eval results
{
'test_accuracy': 0.9405,
'test_f1': 0.9405920712282673,
'test_loss': 0.15769127011299133,
'test_runtime': 10.5179,
'test_samples_per_second': 190.152,
'test_steps_per_second': 3.042
}
Reference:
- Downloads last month
- 10,276
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for bhadresh-savani/bert-base-uncased-emotion
Dataset used to train bhadresh-savani/bert-base-uncased-emotion
Spaces using bhadresh-savani/bert-base-uncased-emotion 17
Evaluation results
- Accuracy on emotiontest set verified0.926
- Precision Macro on emotiontest set verified0.886
- Precision Micro on emotiontest set verified0.926
- Precision Weighted on emotiontest set verified0.927
- Recall Macro on emotiontest set verified0.879
- Recall Micro on emotiontest set verified0.926
- Recall Weighted on emotiontest set verified0.926
- F1 Macro on emotiontest set verified0.882
- F1 Micro on emotiontest set verified0.926
- F1 Weighted on emotiontest set verified0.926