File size: 8,864 Bytes
96a5500 f6b437c 417a7b1 600be72 96a5500 d3c3868 96a5500 d3c3868 96a5500 d3c3868 96a5500 d3c3868 96a5500 bca2f60 96a5500 d3c3868 96a5500 d3c3868 96a5500 d3c3868 96a5500 d3c3868 bca2f60 96a5500 d3c3868 96a5500 d3c3868 96a5500 e02c7b7 d3c3868 bca2f60 96a5500 d3c3868 96a5500 d3c3868 96a5500 d3c3868 96a5500 d3c3868 96a5500 bca2f60 96a5500 d3c3868 96a5500 d3c3868 96a5500 d3c3868 96a5500 d3c3868 bca2f60 96a5500 d3c3868 96a5500 d3c3868 96a5500 d3c3868 96a5500 d3c3868 bca2f60 96a5500 e02c7b7 96a5500 bca2f60 96a5500 e02c7b7 96a5500 bca2f60 96a5500 e02c7b7 96a5500 bca2f60 96a5500 e02c7b7 96a5500 bca2f60 96a5500 fc6b64b baec3a0 fc6b64b bf8ac45 fc6b64b bdeb6cc 718da24 bf8ac45 fc6b64b bf8ac45 959bf80 fc6b64b 052c6ae fc6b64b bdeb6cc fc6b64b 718da24 fc6b64b bf8ac45 fc6b64b 3d4d383 fc6b64b bdeb6cc fc6b64b 052c6ae fc6b64b 052c6ae fc6b64b fa6c997 fc6b64b fa6c997 fc6b64b bf8ac45 fc6b64b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
---
license: openrail
datasets:
- bigcode/the-stack
language:
- code
programming_language:
- Java
- JavaScript
- Python
pipeline_tag: text-generation
widget:
- text: 'def print_hello_world():'
example_title: Hello world
group: Python
model-index:
- name: SantaCoder
results:
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL HumanEval (Python)
metrics:
- name: pass@1
type: pass@1
value: 0.18
verified: false
- name: pass@10
type: pass@10
value: 0.29
verified: false
- name: pass@100
type: pass@100
value: 0.49
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL MBPP (Python)
metrics:
- name: pass@1
type: pass@1
value: 0.35
verified: false
- name: pass@10
type: pass@10
value: 0.58
verified: false
- name: pass@100
type: pass@100
value: 0.77
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL HumanEval (JavaScript)
metrics:
- name: pass@1
type: pass@1
value: 0.16
verified: false
- name: pass@10
type: pass@10
value: 0.27
verified: false
- name: pass@100
type: pass@100
value: 0.47
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL MBPP (Javascript)
metrics:
- name: pass@1
type: pass@1
value: 0.28
verified: false
- name: pass@10
type: pass@10
value: 0.51
verified: false
- name: pass@100
type: pass@100
value: 0.70
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL HumanEval (Java)
metrics:
- name: pass@1
type: pass@1
value: 0.15
verified: false
- name: pass@10
type: pass@10
value: 0.26
verified: false
- name: pass@100
type: pass@100
value: 0.41
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL MBPP (Java)
metrics:
- name: pass@1
type: pass@1
value: 0.28
verified: false
- name: pass@10
type: pass@10
value: 0.44
verified: false
- name: pass@100
type: pass@100
value: 0.59
verified: false
- task:
type: text-generation
dataset:
type: loubnabnl/humaneval_infilling
name: HumanEval FIM (Python)
metrics:
- name: single_line
type: exact_match
value: 0.44
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL HumanEval FIM (Java)
metrics:
- name: single_line
type: exact_match
value: 0.62
verified: false
- task:
type: text-generation
dataset:
type: nuprl/MultiPL-E
name: MultiPL HumanEval FIM (JavaScript)
metrics:
- name: single_line
type: exact_match
value: 0.60
verified: false
- task:
type: text-generation
dataset:
type: code_x_glue_ct_code_to_text
name: CodeXGLUE code-to-text (Python)
metrics:
- name: BLEU
type: bleu
value: 18.13
verified: false
---
# SantaCoder
![banner](https://huggingface.co/datasets/bigcode/admin/resolve/main/banner.png)
Play with the model on the [SantaCoder Space Demo](https://huggingface.co/spaces/bigcode/santacoder-demo).
# Table of Contents
1. [Model Summary](#model-summary)
2. [Use](#use)
3. [Limitations](#limitations)
4. [Training](#training)
5. [License](#license)
6. [Citation](#citation)
# Model Summary
The SantaCoder models are a series of 1.1B parameter models trained on the Python, Java, and JavaScript subset of [The Stack (v1.1)](https://huggingface.co/datasets/bigcode/the-stack) (which excluded opt-out requests).
The main model uses [Multi Query Attention](https://arxiv.org/abs/1911.02150), was trained using near-deduplication and comment-to-code ratio as filtering criteria and using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255).
In addition there are several models that were trained on datasets with different filter parameters and with architecture and objective variations.
- **Repository:** [bigcode/Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
- **Project Website:** [bigcode-project.org](www.bigcode-project.org)
- **Paper:** [🎅SantaCoder: Don't reach for the stars!🌟](https://t.co/YV3pzUbYOr)
- **Point of Contact:** [contact@bigcode-project.org](mailto:contact@bigcode-project.org)
- **Languages:** Python, Java, and JavaScript
|Model|Architecture|Objective|Filtering|
|:-|:-|:-|:-|
|`mha`|MHA|AR + FIM| Base |
|`no-fim`| MQA | AR| Base |
|`fim`| MQA | AR + FIM | Base |
|`stars`| MQA | AR + FIM | GitHub stars |
|`fertility`| MQA | AR + FIM | Tokenizer fertility |
|`comments`| MQA | AR + FIM | Comment-to-code ratio |
|`dedup-alt`| MQA | AR + FIM | Stronger near-deduplication |
|`final`| MQA | AR + FIM | Stronger near-deduplication and comment-to-code ratio |
The `final` model is the best performing model and was trained twice as long (236B tokens) as the others. This checkpoint is the default model and available on the `main` branch. All other checkpoints are on separate branches with according names.
# Use
## Intended use
The model was trained on GitHub code. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well.
You should phrase commands like they occur in source code such as comments (e.g. `# the following function computes the sqrt`) or write a function signature and docstring and let the model complete the function body.
**Feel free to share your generations in the Community tab!**
## How to use
### Generation
```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigcode/santacoder"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, trust_remote_code=True).to(device)
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
### Fill-in-the-middle
Fill-in-the-middle uses special tokens to identify the prefix/middle/suffic part of the input and output:
```python
input_text = "<fim-prefix>def print_hello_world():\n <fim-suffix>\n print('Hello world!')<fim-middle>"
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
### Load other checkpoints
We upload the checkpoint of each experiment to a seperate branch as well as the intermediate checkpoints as commits on the branches. You can load them with the `revision` flag:
```python
model = AutoModelForCausalLM.from_pretrained(
"bigcode/santacoder",
revision="no-fim", # name of branch or commit hash
trust_remote_code=True
)
```
### Attribution & Other Requirements
The pretraining dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/santacoder-search) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code.
# Limitations
The model has been trained on source code in Python, Java, and JavaScript. The predominant language in source is English although other languages are also present. As such the model is capable to generate code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits.
# Training
## Model
- **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
- **Pretraining steps:** 600K
- **Pretraining tokens:** 236 billion
- **Precision:** float16
## Hardware
- **GPUs:** 96 Tesla V100
- **Training time:** 6.2 days
- **Total FLOPS:** 2.1 x 10e21
## Software
- **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
- **FP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
# License
The model is licenses under the CodeML Open RAIL-M v0.1 license. You can find the full license [here](https://huggingface.co/spaces/bigcode/license).
# Citation
**TODO** |