File size: 29,431 Bytes
a655f9e e9247ea 472cdd0 e3b568c 472cdd0 d74ffd8 0bc3d2e a6cebd9 d9bf58e a6cebd9 d9bf58e a6cebd9 d9bf58e a6cebd9 d9bf58e a6cebd9 d9bf58e a6cebd9 a7ef188 a6cebd9 d9bf58e a6cebd9 d9bf58e e965be3 a6cebd9 d9bf58e 8540347 a6cebd9 d9bf58e 11a7c1b a6cebd9 d9bf58e 5d3b298 8540347 5d3b298 bb3556d aee8c40 bb3556d aee8c40 bb3556d aee8c40 bb3556d a655f9e 83839ee 536a915 eb49b9c 483e9e2 0200b62 536a915 6cb7cc9 536a915 168ece4 6cb7cc9 472cdd0 536a915 6cb7cc9 472cdd0 536a915 6cb7cc9 472cdd0 536a915 4051715 536a915 472cdd0 536a915 ba402e7 536a915 472cdd0 536a915 472cdd0 536a915 8ffc30e 472cdd0 536a915 472cdd0 536a915 0aa20cd 6cb7cc9 472cdd0 536a915 6cb7cc9 536a915 472cdd0 536a915 6cb7cc9 536a915 472cdd0 536a915 472cdd0 536a915 472cdd0 536a915 ae814bf 536a915 472cdd0 536a915 472cdd0 536a915 472cdd0 536a915 472cdd0 6cb7cc9 536a915 6cb7cc9 472cdd0 6cb7cc9 472cdd0 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 51eb23c 6cb7cc9 536a915 0140768 536a915 6cb7cc9 536a915 34aa644 472cdd0 34aa644 536a915 34aa644 536a915 6cb7cc9 bfd53df 536a915 6cb7cc9 2a3d62e 6cb7cc9 2a3d62e 6cb7cc9 472cdd0 6cb7cc9 472cdd0 536a915 472cdd0 536a915 472cdd0 6cb7cc9 472cdd0 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 472cdd0 536a915 6cb7cc9 472cdd0 6cb7cc9 536a915 472cdd0 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 46e5752 6cb7cc9 536a915 6cb7cc9 536a915 472cdd0 536a915 472cdd0 536a915 6cb7cc9 536a915 472cdd0 536a915 472cdd0 536a915 6cb7cc9 536a915 d9bf58e 536a915 215bee9 536a915 472cdd0 536a915 472cdd0 536a915 472cdd0 536a915 6cb7cc9 536a915 472cdd0 536a915 472cdd0 536a915 472cdd0 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 472cdd0 536a915 472cdd0 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 472cdd0 536a915 472cdd0 536a915 472cdd0 536a915 472cdd0 6cb7cc9 dc534f6 536a915 6cb7cc9 472cdd0 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 472cdd0 6cb7cc9 536a915 472cdd0 114e931 536a915 472cdd0 536a915 6cb7cc9 bb3556d 536a915 472cdd0 536a915 bb3556d 536a915 6cb7cc9 536a915 bb3556d 3f4b529 373a962 bb3556d 874fa44 7e1e135 aee8c40 bb3556d 472cdd0 536a915 bb3556d 536a915 bb3556d 536a915 bb3556d 536a915 bb3556d 536a915 bb3556d 536a915 472cdd0 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 bf2a471 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 6cb7cc9 536a915 472cdd0 536a915 472cdd0 536a915 472cdd0 536a915 472cdd0 536a915 472cdd0 536a915 472cdd0 536a915 472cdd0 536a915 472cdd0 536a915 6cb7cc9 472cdd0 6cb7cc9 44651d2 472cdd0 6cb7cc9 472cdd0 6cb7cc9 472cdd0 6cb7cc9 472cdd0 6cb7cc9 472cdd0 6cb7cc9 9e27a90 6cb7cc9 472cdd0 6cb7cc9 536a915 d9bf58e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 |
---
license: bigscience-bloom-rail-1.0
language:
- ak
- ar
- as
- bm
- bn
- ca
- code
- en
- es
- eu
- fon
- fr
- gu
- hi
- id
- ig
- ki
- kn
- lg
- ln
- ml
- mr
- ne
- nso
- ny
- or
- pa
- pt
- rn
- rw
- sn
- st
- sw
- ta
- te
- tn
- ts
- tum
- tw
- ur
- vi
- wo
- xh
- yo
- zh
- zu
programming_language:
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
pipeline_tag: text-generation
widget:
- text: 'A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses the word whatpu is: We were traveling in Africa and we saw these very cute whatpus. | To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:'
example_title: Imaginary word
group: English
- text: 'Un "whatpu" est un petit animal à fourrure originaire de Tanzanie. Un exemple de phrase qui utilise le mot whatpu est: Nous étions en Afrique et nous avons vu des whatpus trop mignons. Faire un "farduddle" veut dire sauter sur place vraiment vite. Un exemple de phrase qui utilise le mot farduddle est:'
example_title: Imaginary word
group: French
- text: 'Un "whatpu" es un pequeño animal peludo nativo de Tanzania. Un ejemplo de una oración que usa la palabra whatpu es: Estábamos viajando por África y vimos estos whatpus muy bonitos. Hacer un "farduddle" significa saltar arriba y abajo muy rápido. Un ejemplo de una oración que usa la palabra farduddle es:'
example_title: Imaginary word
group: Spanish
- text: ' ال"واتبو" هو حيوان صغير مكسو بالفراء يعيش في تنزانيا. مثال على جملة تستخدم كلمة واتبو هي: كنا نسافر في افريقيا و رأينا هؤلاء الواتبو اللطفاء. للقيام ب"فاردادل" يعني ان تقفز للأعلى و الأسفل بسرعة كبيرة. مثال على جملة تستخدم كلمة فاردادل هي:'
example_title: Imaginary word
group: Arabic
- text: 'Um "whatpu" é um pequeno animal peludo nativo da Tanzânia. Um exemplo de uma frase que usa a palavra whatpu é: Estávamos a viajar por África e vimos uns whatpus muito queridos. Fazer um "farduddle" significa saltar para cima e para baixo muito rápido. Um exemplo de uma frase que usa a palavra farduddle é:'
example : Imaginary word
group: Portuguese
- text: Pour déguster un ortolan, il faut tout d'abord
example_title: Recipe
group: French
- text: |-
34+10=44
54+20=
example_title: Addition
group: Math
- text: |-
This tool converts irregular verbs to past tense.
Arise - Arose
Become - Became
Forget - Forgot
Freeze -
example_title: Irregular verbs
group: English
- text: |-
Please unscramble the letters into a word, and write that word:
r e!c.i p r o.c a/l = reciprocal
d.o m i!n a n.t =
example_title: Word unscrambling
group: English
- text: |-
Estos ejemplos quitan vocales de las palabras
Ejemplos:
hola - hl
manzana - mnzn
papas - pps
alacran - lcrn
papa -
example_title: Vowel removal
group: Spanish
- text: |-
Traduce español de España a español de Argentina
El coche es rojo - el auto es rojo
El ordenador es nuevo - la computadora es nueva
el boligrafo es negro - lapicera es negra
la nevera
example_title: Spanish to Argentinian Spanish
group: Spanish
- text: To say "I love you" in Hindi, you would say
example_title: Translation to Hindi
group: English
- text: To say "I love you" in Hindi, you would say
example_title: Translation from English
group: Hindi
- text: 'Poor English: She no went to the market. Corrected English:'
example_title: Grammar exercise 1
group: English
- text: 'استخراج العدد العاملي في لغة بايثون:'
example_title: Code generation
group: Arabic
- text: 'Regexp. Here is a regular expression to match a word starting with a number and then having only vowels:'
example_title: Regular expressions
group: English
- text: |-
Do a hello world in different languages:
Python: print("hello world")
R:
example_title: Code generation
group: English
- text: |-
Which is the correct preposition? I'm born X July. X is the preposition in
He sat X a chair. X is the preposition on
She drove X the bridge. X is the preposition
example_title: Grammar exercise 2
group: English
- text: |-
Traduction en français: Dans cet essai je vais m'interroger sur la conscience des modèles d'intelligence artificielle récents comme les modèles de langue. Pour commencer, je m'intéresserai à la notion de conscience et à ce qui la caractérise. Ensuite, j'aborderai la question de l'intelligence et de son lien avec le langage. Enfin, dans une dernière partie je me pencherai sur le cas de l'IA et sur sa conscience.
Traduction en espagnol:
example_title: Translation to Spanish
group: French
- text: |-
Traducción al francés: Dans cet essai je vais m'interroger sur la conscience des modèles d'intelligence artificielle récents comme les modèles de langue. Pour commencer, je m'intéresserai à la notion de conscience et à ce qui la caractérise. Ensuite, j'aborderai la question de l'intelligence et de son lien avec le langage. Enfin, dans une dernière partie je me pencherai sur le cas de l'IA et sur sa conscience.
Traducción al español:
example_title: Translation from French
group: Spanish
- text: ذات مرة ، عاش شبل الدب في الغابة
example_title: Fairy tale
group: Arabic
- text: एक बार की बात है, जंगल में एक भालू का शावक रहता था
example_title: Fairy tale
group: Hindi
- text: Il était une fois une licorne qui vivait
example_title: Fairy tale
group: French
- text: |-
Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the gold balls are blue. How many blue golf balls are there?
A: Let's think step by step.
example_title: Mathematical reasoning
group: English
model-index:
- name: bloom
results:
- task:
type: text-generation
name: text generation
dataset:
name: humaneval
type: humaneval
metrics:
- name: pass@1
type: pass@1
value: 0.15542682926829265
verified: false
- name: pass@10
type: pass@10
value: 0.3278356276947017
verified: false
- name: pass@100
type: pass@100
value: 0.5719815685597749
verified: false
---
<img src="https://s3.amazonaws.com/moonup/production/uploads/1657124309515-5f17f0a0925b9863e28ad517.png" alt="BigScience Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
BigScience Large Open-science Open-access Multilingual Language Model
Version 1.3 / 6 July 2022
Current Checkpoint: **Training Iteration 95000**
Total seen tokens: **366B**
---
# Model Details
BLOOM is an autoregressive Large Language Model (LLM), trained to continue text from a prompt on vast amounts of text data using industrial-scale computational resources. As such, it is able to output coherent text in 46 languages and 13 programming languages that is hardly distinguishable from text written by humans. BLOOM can also be instructed to perform text tasks it hasn't been explicitly trained for, by casting them as text generation tasks.
## Basics
*This section provides information about the model type, version, license, funders, release date, developers, and contact information.*
*It is useful for anyone who wants to reference the model.*
<details>
<summary>Click to expand</summary>
**Developed by:** BigScience ([website](https://bigscience.huggingface.co))
*All collaborators are either volunteers or have an agreement with their employer. (Further breakdown of participants forthcoming.)*
**Model Type:** Transformer-based Language Model
**Checkpoints format:** `transformers` (Megatron-DeepSpeed format available [here](https://huggingface.co/bigscience/bloom-optimizer-states))
**Version:** 1.0.0
**Languages:** Multiple; see [training data](#training-data)
**License:** RAIL License v1.0 ([link](https://huggingface.co/spaces/bigscience/license) / [article and FAQ](https://bigscience.huggingface.co/blog/the-bigscience-rail-license))
**Release Date Estimate:** Monday, 11.July.2022
**Send Questions to:** bigscience-contact@googlegroups.com
**Cite as:** BigScience, _BigScience Language Open-science Open-access Multilingual (BLOOM) Language Model_. International, May 2021-May 2022
**Funded by:**
* The French government.
* Hugging Face ([website](https://huggingface.co)).
* Organizations of contributors. *(Further breakdown of organizations forthcoming.)*
</details>
## Technical Specifications
*This section includes details about the model objective and architecture, and the compute infrastructure.*
*It is useful for people interested in model development.*
<details>
<summary>Click to expand</summary>
Please see [the BLOOM training README](https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml#readme) for full details on replicating training.
### Model Architecture and Objective
* Modified from Megatron-LM GPT2 (see [paper](https://arxiv.org/abs/1909.08053), [BLOOM Megatron code](https://github.com/bigscience-workshop/Megatron-DeepSpeed)):
* Decoder-only architecture
* Layer normalization applied to word embeddings layer (`StableEmbedding`; see [code](https://github.com/facebookresearch/bitsandbytes), [paper](https://arxiv.org/pdf/2110.02861.pdf))
* ALiBI positional encodings (see [paper](https://arxiv.org/pdf/2108.12409.pdf)), with GeLU activation functions
* 176,247,271,424 parameters:
* 3,596,615,680 embedding parameters
* 70 layers, 112 attention heads
* Hidden layers are 14336-dimensional
* Sequence length of 2048 tokens used (see [BLOOM tokenizer](https://huggingface.co/bigscience/tokenizer), [tokenizer description](#tokenization))
**Objective Function:** Cross Entropy with mean reduction (see [API documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss)).
### Compute infrastructure
Jean Zay Public Supercomputer, provided by the French government (see [announcement](https://www.enseignementsup-recherche.gouv.fr/fr/signature-du-marche-d-acquisition-de-l-un-des-supercalculateurs-les-plus-puissants-d-europe-46733)).
#### Hardware
* 384 A100 80GB GPUs (48 nodes)
* Additional 32 A100 80GB GPUs (4 nodes) in reserve
* 8 GPUs per node Using NVLink 4 inter-gpu connects, 4 OmniPath links
* CPU: AMD
* CPU memory: 512GB per node
* GPU memory: 640GB per node
* Inter-node connect: Omni-Path Architecture (OPA)
* NCCL-communications network: a fully dedicated subnet
* Disc IO network: shared network with other types of nodes
#### Software
* Megatron-DeepSpeed ([Github link](https://github.com/bigscience-workshop/Megatron-DeepSpeed))
* DeepSpeed ([Github link](https://github.com/microsoft/DeepSpeed))
* PyTorch (pytorch-1.11 w/ CUDA-11.5; see [Github link](https://github.com/pytorch/pytorch))
* apex ([Github link](https://github.com/NVIDIA/apex))
</details>
---
# Training
*This section provides information about the training data, the speed and size of training elements, and the environmental impact of training.*
*It is useful for people who want to learn more about the model inputs and training footprint.*
<details>
<summary>Click to expand</summary>
## Training Data
*This section provides a high-level overview of the training data. It is relevant for anyone who wants to know the basics of what the model is learning.*
Details for each dataset are provided in individual [Data Cards](https://huggingface.co/spaces/bigscience/BigScienceCorpus), and the sizes of each of their contributions to the aggregated training data are presented in an [Interactive Corpus Map](https://huggingface.co/spaces/bigscience-catalogue-lm-data/corpus-map).
Training data includes:
- 46 natural languages
- 13 programming languages
- In 1.6TB of pre-processed text, converted into 350B unique tokens (see [the tokenizer section](#tokenization) for more.)
### Languages
The pie chart shows the distribution of languages in training data.
![pie chart showing the distribution of languages in training data](https://github.com/bigscience-workshop/model_card/blob/main/assets/data/pie_v2.svg?raw=true)
The following tables shows the further distribution of Niger-Congo & Indic languages and programming languages in the training data.
Distribution of Niger Congo and Indic languages.
| Niger Congo | Percentage | | Indic | Percentage |
|----------------|------------| ------ |-----------|------------|
| Chi Tumbuka | 0.00002 | | Assamese | 0.01 |
| Kikuyu | 0.00004 | | Odia | 0.04 |
| Bambara | 0.00004 | | Gujarati | 0.04 |
| Akan | 0.00007 | | Marathi | 0.05 |
| Xitsonga | 0.00007 | | Punjabi | 0.05 |
| Sesotho | 0.00007 | | Kannada | 0.06 |
| Chi Chewa | 0.0001 | | Nepali | 0.07 |
| Setswana | 0.0002 | | Telugu | 0.09 |
| Lingala | 0.0002 | | Malayalam | 0.10 |
| Northern Sotho | 0.0002 | | Urdu | 0.10 |
| Fon | 0.0002 | | Tamil | 0.20 |
| Kirundi | 0.0003 | | Bengali | 0.50 |
| Wolof | 0.0004 | | Hindi | 0.70 |
| Luganda | 0.0004 |
| Chi Shona | 0.001 |
| Isi Zulu | 0.001 |
| Igbo | 0.001 |
| Xhosa | 0.001 |
| Kinyarwanda | 0.003 |
| Yoruba | 0.006 |
| Swahili | 0.02 |
Distribution of programming languages.
| Extension | Language | Number of files |
|----------------|------------|-----------------|
| java | Java | 5,407,724 |
| php | PHP | 4,942,186 |
| cpp | C++ | 2,503,930 |
| py | Python | 2,435,072 |
| js | JavaScript | 1,905,518 |
| cs | C# | 1,577,347 |
| rb | Ruby | 6,78,413 |
| cc | C++ | 443,054 |
| hpp | C++ | 391,048 |
| lua | Lua | 352,317 |
| go | GO | 227,763 |
| ts | TypeScript | 195,254 |
| C | C | 134,537 |
| scala | Scala | 92,052 |
| hh | C++ | 67,161 |
| H | C++ | 55,899 |
| tsx | TypeScript | 33,107 |
| rs | Rust | 29,693 |
| phpt | PHP | 9,702 |
| c++ | C++ | 1,342 |
| h++ | C++ | 791 |
| php3 | PHP | 540 |
| phps | PHP | 270 |
| php5 | PHP | 166 |
| php4 | PHP | 29 |
### Preprocessing
**Tokenization:** The BLOOM tokenizer ([link](https://huggingface.co/bigscience/tokenizer)), a learned subword tokenizer trained using:
- A byte-level Byte Pair Encoding (BPE) algorithm
- A simple pre-tokenization rule, no normalization
- A vocabulary size of 250,680
It was trained on a subset of a preliminary version of the corpus using alpha-weighting per language.
## Speeds, Sizes, Times
Training logs: [Tensorboard link](https://huggingface.co/tensorboard/bigscience/tr11-176B-ml-logs/)
- Dates:
- Started 11th March, 2022 11:42am PST
- Estimated end: 5th July, 2022
- Checkpoint size:
- Bf16 weights: 329GB
- Full checkpoint with optimizer states: 2.3TB
- Training throughput: About 150 TFLOP per GPU per second
- Number of epochs: 1
- Estimated cost of training: Equivalent of $2-5M in cloud computing (including preliminary experiments)
- Server training location: Île-de-France, France
## Environmental Impact
The training supercomputer, Jean Zay ([website](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html)), uses mostly nuclear energy. The heat generated by it is reused for heating campus housing.
**Estimated carbon emissions:** *(Forthcoming.)*
**Estimated electricity usage:** *(Forthcoming.)*
</details>
---
# Uses
*This section addresses questions around how the model is intended to be used, discusses the foreseeable users of the model (including those affected by the model), and describes uses that are considered out of scope or misuse of the model.*
*It is useful for anyone considering using the model or who is affected by the model.*
<details>
<summary>Click to expand</summary>
## How to use
This model can be easily used and deployed using HuggingFace's ecosystem. This needs `transformers` and `accelerate` installed. The model can be downloaded as follows:
<img src="https://s3.amazonaws.com/moonup/production/uploads/1657271608456-62441d1d9fdefb55a0b7d12c.png" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
## Intended Use
This model is being created in order to enable public research on large language models (LLMs). LLMs are intended to be used for language generation or as a pretrained base model that can be further fine-tuned for specific tasks. Use cases below are not exhaustive.
### Direct Use
- Text generation
- Exploring characteristics of language generated by a language model
- Examples: Cloze tests, counterfactuals, generations with reframings
### Downstream Use
- Tasks that leverage language models include: Information Extraction, Question Answering, Summarization
### Misuse and Out-of-scope Use
*This section addresses what users ought not do with the model.*
See the [BLOOM License](https://huggingface.co/spaces/bigscience/license), Attachment A, for detailed usage restrictions. The below list is non-exhaustive, but lists some easily foreseeable problematic use cases.
#### Out-of-scope Uses
Using the model in [high-stakes](#high-stakes) settings is out of scope for this model. The model is not designed for [critical decisions](#critical-decisions) nor uses with any material consequences on an individual's livelihood or wellbeing. The model outputs content that appears factual but may not be correct.
Out-of-scope Uses Include:
- Usage in biomedical domains, political and legal domains, or finance domains
- Usage for evaluating or scoring individuals, such as for employment, education, or credit
- Applying the model for critical automatic decisions, generating factual content, creating reliable summaries, or generating predictions that must be correct
#### Misuse
Intentionally using the model for harm, violating [human rights](#human-rights), or other kinds of malicious activities, is a misuse of this model. This includes:
- Spam generation
- Disinformation and influence operations
- Disparagement and defamation
- Harassment and abuse
- [Deception](#deception)
- Unconsented impersonation and imitation
- Unconsented surveillance
- Generating content without attribution to the model, as specified in the [RAIL License, Use Restrictions](https://huggingface.co/spaces/bigscience/license)
## Intended Users
### Direct Users
- General Public
- Researchers
- Students
- Educators
- Engineers/developers
- Non-commercial entities
- Community advocates, including human and civil rights groups
### Indirect Users
- Users of derivatives created by Direct Users, such as those using software with an [intended use](#intended-use)
- Users of [Derivatives of the Model, as described in the License](https://huggingface.co/spaces/bigscience/license)
### Others Affected (Parties Prenantes)
- People and groups referred to by the LLM
- People and groups exposed to outputs of, or decisions based on, the LLM
- People and groups whose original work is included in the LLM
</details>
---
# Risks and Limitations
*This section identifies foreseeable harms and misunderstandings.*
<details>
<summary>Click to expand</summary>
Model may:
- Overrepresent some viewpoints and underrepresent others
- Contain stereotypes
- Contain [personal information](#personal-data-and-information)
- Generate:
- Hateful, abusive, or violent language
- Discriminatory or prejudicial language
- Content that may not be appropriate for all settings, including sexual content
- Make errors, including producing incorrect information as if it were factual
- Generate irrelevant or repetitive outputs
- Induce users into attributing human traits to it, such as sentience or consciousness
</details>
---
# Evaluation
*This section describes the evaluation protocols and provides the results.*
<details>
<summary>Click to expand</summary>
## Metrics
*This section describes the different ways performance is calculated and why.*
Includes:
| Metric | Why chosen |
|--------------------|--------------------------------------------------------------------|
| [Perplexity](#perplexity) | Standard metric for quantifying model improvements during training |
| Cross Entropy [Loss](#loss) | Standard objective for language models. |
And multiple different metrics for specific tasks. _(More evaluation metrics forthcoming upon completion of evaluation protocol.)_
## Factors
*This section lists some different aspects of BLOOM models. Its focus is on aspects that are likely to give rise to high variance in model behavior.*
- Language, such as English or Yoruba
- Domain, such as newswire or stories
- Demographic characteristics, such as gender or nationality
## Results
*Results are based on the [Factors](#factors) and [Metrics](#metrics).*
**Zero-shot evaluations:**
<span style="color:red"><b>WARNING:</b> This section used to contain much more results, however they were not correct and we released without the approval of the evaluation working group. We are currently in the process of fixing the evaluations.</span>
See this repository for JSON files: https://github.com/bigscience-workshop/evaluation-results
| Task | Language | Metric | BLOOM-176B | OPT-175B* |
|:--------|:-----------------|:------------------------|-------------:|------------:|
| humaneval | python | pass@1 ↑ | 0.155 | 0.0 |
| humaneval | python | pass@10 ↑ | 0.328 | 0.0 |
| humaneval | python | pass@100 ↑ | 0.572 | 0.003 |
**Train-time Evaluation:**
Final checkpoint after 95K steps:
- Training Loss: 1.939
- Validation Loss: 2.061
- Perplexity: 7.045
For more see: https://huggingface.co/bigscience/tr11-176B-ml-logs
</details>
---
# Recommendations
*This section provides information on warnings and potential mitigations.*
<details>
<summary>Click to expand</summary>
- Indirect users should be made aware when the content they're working with is created by the LLM.
- Users should be aware of [Risks and Limitations](#risks-and-limitations), and include an appropriate age disclaimer or blocking interface as necessary.
- Models trained or finetuned downstream of BLOOM LM should include an updated Model Card.
- Users of the model should provide mechanisms for those affected to provide feedback, such as an email address for comments.
</details>
---
# Glossary and Calculations
*This section defines common terms and how metrics are calculated.*
<details>
<summary>Click to expand</summary>
- <a name="loss">**Loss:**</a> A calculation of the difference between what the model has learned and what the data shows ("groundtruth"). The lower the loss, the better. The training process aims to minimize the loss.
- <a name="perplexity">**Perplexity:**</a> This is based on what the model estimates the probability of new data is. The lower the perplexity, the better. If the model is 100% correct at predicting the next token it will see, then the perplexity is 1. Mathematically this is calculated using entropy.
- <a name="high-stakes">**High-stakes settings:**</a> Such as those identified as "high-risk AI systems" and "unacceptable risk AI systems" in the European Union's proposed [Artificial Intelligence (AI) Act](https://artificialintelligenceact.eu/annexes/).
- <a name="critical-decisions">**Critical decisions:**</a> Such as those defined in [the United States' proposed Algorithmic Accountability Act](https://www.congress.gov/117/bills/s3572/BILLS-117s3572is.pdf).
- <a name="human-rights">**Human rights:**</a> Includes those rights defined in the [Universal Declaration of Human Rights](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf).
- <a name="personal-data-and-information">**Personal Data and Personal Information:**</a> Personal data and information is defined in multiple data protection regulations, such as "[personal data](https://gdpr-info.eu/issues/personal-data/)" in the [European Union's General Data Protection Regulation](https://gdpr-info.eu); and "personal information" in the Republic of South Africa's [Protection of Personal Information Act](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf), The People's Republic of China's [Personal information protection law](http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm).
- <a name="sensitive-characteristics">**Sensitive characteristics:**</a> This includes specifically protected categories in human rights (see [UHDR, Article 2](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf)) and personal information regulation (see GDPR, [Article 9; Protection of Personal Information Act, Chapter 1](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf))
- <a name="deception">**Deception:**</a> Doing something to intentionally mislead individuals to believe something that is false, such as by creating deadbots or chatbots on social media posing as real people, or generating text documents without making consumers aware that the text is machine generated.
</details>
---
# More Information
*This section provides links to writing on dataset creation, technical specifications, lessons learned, and initial results.*
<details>
<summary>Click to expand</summary>
## Intermediate checkpoints
For academic (or any) usage, we published the intermediate checkpoints, corresponding to the model state at each 5000 steps. Please follow [this link](https://huggingface.co/bigscience/bloom-176-intermediate) to get these checkpoints.
## Dataset Creation
Blog post detailing the design choices during the dataset creation: https://bigscience.huggingface.co/blog/building-a-tb-scale-multilingual-dataset-for-language-modeling
## Technical Specifications
Blog post summarizing how the architecture, size, shape, and pre-training duration where selected: https://bigscience.huggingface.co/blog/what-language-model-to-train-if-you-have-two-million-gpu-hours
More details on the architecture/optimizer: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml
Blog post on the hardware/engineering side: https://bigscience.huggingface.co/blog/which-hardware-to-train-a-176b-parameters-model
Details on the distributed setup used for the training: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml
Tensorboard updated during the training: https://huggingface.co/bigscience/tr11-176B-ml-logs/tensorboard#scalars&tagFilter=loss
## Lessons
Insights on how to approach training, negative results: https://github.com/bigscience-workshop/bigscience/blob/master/train/lessons-learned.md
Details on the obstacles overcome during the preparation on the engineering side (instabilities, optimization of training throughput, so many technical tricks and questions): https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md
## Initial Results
Initial prompting experiments using interim checkpoints: https://huggingface.co/spaces/bigscience/bloom-book
</details>
## Original checkpoints
The checkpoints in this repo correspond to the HuggingFace Transformers format. If you want to use our fork of [Megatron-DeepSpeed](https://github.com/bigscience-workshop/Megatron-DeepSpeed) that the model was trained with, you'd want to use [this repo instead](https://huggingface.co/bigscience/bloom-optimizer-states).
---
# Model Card Authors
*Ordered roughly chronologically and by amount of time spent.*
Margaret Mitchell, Giada Pistilli, Yacine Jernite, Ezinwanne Ozoani, Marissa Gerchick, Nazneen Rajani, Sasha Luccioni, Irene Solaiman, Maraim Masoud, Somaieh Nikpoor, Carlos Muñoz Ferrandis, Stas Bekman, Christopher Akiki, Danish Contractor, David Lansky, Angelina McMillan-Major, Tristan Thrush, Suzana Ilić, Gérard Dupont, Shayne Longpre, Manan Dey, Stella Biderman, Douwe Kiela, Emi Baylor, Teven Le Scao, Aaron Gokaslan, Julien Launay, Niklas Muennighoff |