lunarlander / config.json
blkpst's picture
try land this thing
dfac4bf
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb56bce9090>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb56bce9120>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb56bce91b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb56bce9240>", "_build": "<function ActorCriticPolicy._build at 0x7fb56bce92d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb56bce9360>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb56bce93f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb56bce9480>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb56bce9510>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb56bce95a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb56bce9630>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb56bce96c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb56bcec040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692676068309528319, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAC8W70p+me8xq2KPVImMj1K2Zi9A4yjPQAAgD8AAIA/er0uvmhXHT/WMkS9R8kIv+xtBr68bCM8AAAAAAAAAACTSF2+8aByPps90D39ZIq+N07uvWY3rj0AAAAAAAAAAMBevT04h5+7gBP0O8SSrzzuqPy8J6CXPQAAgD8AAIA/ZuAxvCOnsT/yTRK+d5tnvvtAVrxXZKG9AAAAAAAAAACdO50+aSJhPsX3s76eHY6+zcgLPSKWFr0AAAAAAAAAANNHLz4cEWi878MUvqKODL7S4Py9hK8vvwAAAAAAAAAAaxCvvuFL1D4B/YU8s+IQvzHkgL7SfPo9AAAAAAAAAAB64Ai+MhtOPrvnSj6kJ7++HS1fvXvWsj0AAAAAAAAAAN1gqD7eW9U+b303vsHMxb5GGwA+IUCKvQAAAAAAAAAAoL0pPgPAHbwOVGO5ZYM2NyWLib2COow4AACAPwAAgD/w5ss+v+w/PxCD47zqWvG+qN2DPt7Npr0AAAAAAAAAAGYNsj32XGq6KH6tuWsyDTZpFeK6qNHbOAAAAAAAAIA/5n8rvtxdFz69RHw+0Kx8viZAj711dfk9AAAAAAAAAACwc5I+JfjdPsNU2L5Dxfi+6EDAvLvT3b0AAAAAAAAAAIC1OL7hMsq8NUcDO1HiiDmzrS8+Wl83ugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEL0aVD8ceMAWyUS8eMAXSUR0Chg194NZvDdX2UKGgGR0BwcF8YyfthaAdNWQFoCEdAoYOPbO/tY3V9lChoBkdAcsxdLg4wRGgHS/9oCEdAoYPbin5zo3V9lChoBkdAWNUKpkwvg2gHTegDaAhHQKGD4yzolld1fZQoaAZHQHBqQa3qiXZoB0veaAhHQKGEO5U96kZ1fZQoaAZHQHAP3yAhB7hoB0vIaAhHQKGEsRUWEbp1fZQoaAZHQHLl6ESM98toB0vraAhHQKGFo/JNj9Z1fZQoaAZHQHDhHd43WFxoB0vjaAhHQKGF6y0KJEZ1fZQoaAZHQG0Le2mYSg5oB0viaAhHQKGGD1kDp1R1fZQoaAZHQG/H/2saKk5oB0vHaAhHQKGGNII4VAR1fZQoaAZHQGV2nU2DQJJoB03oA2gIR0Chhjs98qnWdX2UKGgGR0Bus5DgIhQnaAdLzmgIR0ChhpQDFId3dX2UKGgGR0BxoSLvTgEVaAdLy2gIR0ChhrVWCEpRdX2UKGgGR0BvLQWnCO3laAdL3GgIR0ChhsBzNliCdX2UKGgGR0Bwcbrmhdt3aAdLvWgIR0ChhsStV7x/dX2UKGgGR0ByOZv0h/y5aAdNAQFoCEdAoYfDiqABk3V9lChoBkdAcaPi0OVgQmgHS+hoCEdAoYg73M6ikHV9lChoBkdAUTdlRP420mgHS9doCEdAoYjzE9+w1XV9lChoBkdAcME8oQWepWgHS8hoCEdAoYkmBJ7LMnV9lChoBkdAcxrixFAmiWgHS9NoCEdAoYmR+QU5/HV9lChoBkdAcyut6X0GvGgHS9ZoCEdAoYmYs9SuQ3V9lChoBkdAb6caqCHymWgHS7JoCEdAoYme47Rv33V9lChoBkdAbehXo1UEPmgHS79oCEdAoYnA0VJti3V9lChoBkdAczUG5MDfWWgHS/VoCEdAoYnMZrHlwXV9lChoBkdAcDcdqtYCAGgHS9NoCEdAoYnwow22onV9lChoBkdAcS0sxfv4NGgHS9ZoCEdAoYopzBAOa3V9lChoBkdAY6tVRUFSsWgHTegDaAhHQKGKgtknTiN1fZQoaAZHQHDsNic5Ke1oB0vKaAhHQKGLCqwQlKN1fZQoaAZHQHIobJr+HahoB0vNaAhHQKGLipVjqfR1fZQoaAZHQG+zzFl05lxoB0uxaAhHQKGLwzhP0qZ1fZQoaAZHQGOsLNnoPkJoB03oA2gIR0ChjAxC6YmcdX2UKGgGR0BwJn++/QBxaAdLu2gIR0ChjBgfEGaAdX2UKGgGR0BlWJu4wyqNaAdN6ANoCEdAoYwweaKDTXV9lChoBkdAbofDZ13dK2gHS75oCEdAoYx4WJrLyXV9lChoBkdAck84Oc2BKGgHS7loCEdAoYyPY150KnV9lChoBkdAcEtj1wo9cWgHS9RoCEdAoYzet4iX6nV9lChoBkdAcrQpqREF4mgHS99oCEdAoYzi/CZWrHV9lChoBkdAcBSpFCswL2gHS7hoCEdAoY2tQyhzvXV9lChoBkdAc6b83Mpw0mgHS/doCEdAoY27+717IHV9lChoBkdAczqfxtpEhWgHS+toCEdAoY3f/xUedXV9lChoBkdAbpEc/dIoVmgHS7loCEdAoY4xrWRRuXV9lChoBkdAcY2a4tpVTGgHS8NoCEdAoY62IwdsBXV9lChoBkdAYR70qYqoZWgHTegDaAhHQKGPNBVMmF91fZQoaAZHQHHLc36yjYZoB01tAWgIR0Chj06pPykLdX2UKGgGR0Bxwd1SwW30aAdL1WgIR0Chj5M9r434dX2UKGgGR0BwSy3CsOoYaAdL2mgIR0Chj5uOCGvfdX2UKGgGR0Buy2Fg2IfsaAdL32gIR0Chj+CLuQZGdX2UKGgGR0Byvm1rqMWHaAdL6GgIR0ChkI5sj3VTdX2UKGgGR0BynI0ygwoLaAdL92gIR0ChkL2cJ+lTdX2UKGgGR0BzURp8F6iTaAdL4mgIR0ChkPDnFHawdX2UKGgGR0BxfugqVhTgaAdL72gIR0ChkSazu4PPdX2UKGgGR0BvdTgOz6acaAdLvmgIR0ChkZJFTefqdX2UKGgGR0ByK0qZtvXLaAdLy2gIR0ChkZCYLLIQdX2UKGgGR0ByITXSSeRQaAdL4GgIR0ChkgXCj1wpdX2UKGgGR0Bw+cXYUWVNaAdLx2gIR0Chkxwj2SMcdX2UKGgGR0BxsnNmlImPaAdL4mgIR0Chkz78FY+0dX2UKGgGR0ByJQrpaA4GaAdL1mgIR0Chk5ewLVnVdX2UKGgGR0BwvuZ4Oc2BaAdLz2gIR0Chk8S6lLvkdX2UKGgGR0By0uq7yxzJaAdL4mgIR0ChlC2mYSg5dX2UKGgGR0BwYFBQemvXaAdLuWgIR0ChlHIjGDL9dX2UKGgGR0BwnUHVwxWUaAdLtWgIR0ChlM/JvHcUdX2UKGgGR0ByI9/wy6+WaAdLt2gIR0ChlR2sA/9pdX2UKGgGR0BwGlSl3yI6aAdLzGgIR0ChlRm5UcXFdX2UKGgGR0By4OXpnpSraAdNCQFoCEdAoZVw4VARkHV9lChoBkdAY3VMyrPt2WgHTegDaAhHQKGVfARChOB1fZQoaAZHQHFRnCCSRr9oB0vIaAhHQKGV89OARTV1fZQoaAZHQHJ2SofjjrBoB0vUaAhHQKGWw2AoXsR1fZQoaAZHQHIhBzmwJPZoB0vwaAhHQKGW1tix3V11fZQoaAZHQHBfP7WNFSdoB0uwaAhHQKGXFXHR1HR1fZQoaAZHQHFYJhz/6wdoB0u/aAhHQKGXjNorWiF1fZQoaAZHQHHuXAM2FWZoB0vbaAhHQKGYiNtIkJN1fZQoaAZHQHG6YfnwG4ZoB0vIaAhHQKGYraUzKtB1fZQoaAZHQHM61MqSX+loB0vraAhHQKGZz+kxh2J1fZQoaAZHQHHISYTj/+9oB00MAWgIR0ChmevRRdhRdX2UKGgGR0BxnyDBdld1aAdL72gIR0ChmoVWsA/+dX2UKGgGR0BxX9BomG/OaAdL1GgIR0Chmrd2gWaddX2UKGgGR0BwCoV0tAcDaAdL+2gIR0ChmvPUSZjQdX2UKGgGR0Bz7GzgMtsfaAdLw2gIR0ChmwXvx6OYdX2UKGgGR0BzBRYPoV2zaAdNEwFoCEdAoZtcPhAGCHV9lChoBkdAOgJItlI3BGgHS5ZoCEdAoZuhC4SYgXV9lChoBkdAcYKfqX4TK2gHS9toCEdAoZuhK3/gi3V9lChoBkdAb6j7gKnei2gHS8hoCEdAoZunZRKpUHV9lChoBkdAbW+W1MM7VGgHTZwCaAhHQKGcE2lVLjB1fZQoaAZHQHIJC/9Hc1xoB00dAWgIR0ChnHvZ7HAAdX2UKGgGR0BhguC2+fyxaAdN6ANoCEdAoZywmiQDFXV9lChoBkdAcn6hL5AQhGgHS/JoCEdAoZzur2g3+HV9lChoBkdAccXa+evpyWgHS+hoCEdAoZ4D/EOy3XV9lChoBkdAbdgEjgQ6IWgHS+VoCEdAoZ4HpSrHVHV9lChoBkdAcHi6ol2NemgHS+ZoCEdAoZ57iVB2OnV9lChoBkdAc5Z/R3NcGGgHS8xoCEdAoZ5/IS13MnV9lChoBkdAcWe/2Cdz4mgHS91oCEdAoZ6JGMGX5XV9lChoBkdAcCuIu5BkZ2gHS75oCEdAoZ7eTRplBnV9lChoBkdAcW1d8Rcu8WgHS8toCEdAoZ8O/336AXV9lChoBkdAb6JNPgvUSmgHS9NoCEdAoZ8lOmBOHnV9lChoBkdAc4wXCTEBKmgHTQMBaAhHQKGfRnLaEjB1fZQoaAZHQHG1V+RYA81oB0v1aAhHQKGfXVx0dR11fZQoaAZHQHDBQI2OyVxoB0vLaAhHQKGfZ63y7PJ1fZQoaAZHQHI62RA8jiZoB0u4aAhHQKGffhNucc51fZQoaAZHQG1D/DUExItoB0u8aAhHQKGfs7p3X7N1fZQoaAZHQHKik6kqMFVoB0u7aAhHQKGggEV32VV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 350, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}