--- base_model: microsoft/deberta-v3-base datasets: - tals/vitaminc - allenai/scitail - allenai/sciq - allenai/qasc - sentence-transformers/msmarco-msmarco-distilbert-base-v3 - sentence-transformers/natural-questions - sentence-transformers/trivia-qa - sentence-transformers/gooaq - google-research-datasets/paws language: - en library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - dot_accuracy - dot_accuracy_threshold - dot_f1 - dot_f1_threshold - dot_precision - dot_recall - dot_ap - manhattan_accuracy - manhattan_accuracy_threshold - manhattan_f1 - manhattan_f1_threshold - manhattan_precision - manhattan_recall - manhattan_ap - euclidean_accuracy - euclidean_accuracy_threshold - euclidean_f1 - euclidean_f1_threshold - euclidean_precision - euclidean_recall - euclidean_ap - max_accuracy - max_accuracy_threshold - max_f1 - max_f1_threshold - max_precision - max_recall - max_ap pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:123245 - loss:CachedGISTEmbedLoss widget: - source_sentence: what type of inheritance does haemochromatosis sentences: - Nestled on the tranquil banks of the Pamlico River, Moss Landing is a vibrant new community of thoughtfully conceived, meticulously crafted single-family homes in Washington, North Carolina. Washington is renowned for its historic architecture and natural beauty. - '1 Microwave on high for 8 to 10 minutes or until tender, turning the yams once. 2 To microwave sliced yams: Wash, peel, and cut off the woody portions and ends. 3 Cut yams into quarters. 4 Place the yams and 1/2 cup water in a microwave-safe casserole.ake the Yams. 1 Place half the yams in a 1-quart casserole. 2 Layer with half the brown sugar and half the margarine. 3 Repeat the layers. 4 Bake, uncovered, in a 375 degree F oven for 30 to 35 minutes or until the yams are glazed, spooning the liquid over the yams once or twice during cooking.' - Types 1, 2, and 3 hemochromatosis are inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. Most often, the parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene but do not show signs and symptoms of the condition.Type 4 hemochromatosis is distinguished by its autosomal dominant inheritance pattern.With this type of inheritance, one copy of the altered gene in each cell is sufficient to cause the disorder. In most cases, an affected person has one parent with the condition.ype 1, the most common form of the disorder, and type 4 (also called ferroportin disease) begin in adulthood. Men with type 1 or type 4 hemochromatosis typically develop symptoms between the ages of 40 and 60, and women usually develop symptoms after menopause. Type 2 hemochromatosis is a juvenile-onset disorder. - source_sentence: More than 273 people have died from the 2019-20 coronavirus outside mainland China . sentences: - 'More than 3,700 people have died : around 3,100 in mainland China and around 550 in all other countries combined .' - 'More than 3,200 people have died : almost 3,000 in mainland China and around 275 in other countries .' - more than 4,900 deaths have been attributed to COVID-19 . - source_sentence: The male reproductive system consists of structures that produce sperm and secrete testosterone. sentences: - What does the male reproductive system consist of? - What facilitates the diffusion of ions across a membrane? - Autoimmunity can develop with time, and its causes may be rooted in this? - source_sentence: Nitrogen gas comprises about three-fourths of earth's atmosphere. sentences: - What do all cells have in common? - What gas comprises about three-fourths of earth's atmosphere? - What do you call an animal in which the embryo, often termed a joey, is born immature and must complete its development outside the mother's body? - source_sentence: What device is used to regulate a person's heart rate? sentences: - 'Marie Antoinette and the French Revolution . Famous Faces . Mad Max: Maximilien Robespierre | PBS Extended Interviews > Resources > For Educators > Mad Max: Maximilien Robespierre Maximilien Robespierre was born May 6, 1758 in Arras, France. Educated at the Lycée Louis-le-Grand in Paris as a lawyer, Robespierre became a disciple of philosopher Jean-Jacques Rousseau and a passionate advocate for the poor. Called "the Incorruptible" because of his unwavering dedication to the Revolution, Robespierre joined the Jacobin Club and earned a loyal following. In contrast to the more republican Girondins and Marie Antoinette, Robespierre fiercely opposed declaring war on Austria, feeling it would distract from revolutionary progress in France. Robespierre''s exemplary oratory skills influenced the National Convention in 1792 to avoid seeking public opinion about the Convention’s decision to execute King Louis XVI. In 1793, the Convention elected Robespierre to the Committee of Public Defense. He was a highly controversial member, developing radical policies, warning of conspiracies, and suggesting restructuring the Convention. This behavior eventually led to his downfall, and he was guillotined without trial on 10th Thermidor An II (July 28, 1794), marking the end of the Reign of Terror. Famous Faces' - Devices for Arrhythmia Devices for Arrhythmia Updated:Dec 21,2016 In a medical emergency, life-threatening arrhythmias may be stopped by giving the heart an electric shock (as with a defibrillator ). For people with recurrent arrhythmias, medical devices such as a pacemaker and implantable cardioverter defibrillator (ICD) can help by continuously monitoring the heart's electrical system and providing automatic correction when an arrhythmia starts to occur. This section covers everything you need to know about these devices. Implantable Cardioverter Defibrillator (ICD) - 'vintage cleats | eBay vintage cleats: 1 2 3 4 5 eBay determines this price through a machine learned model of the product''s sale prices within the last 90 days. eBay determines trending price through a machine learned model of the product’s sale prices within the last 90 days. "New" refers to a brand-new, unused, unopened, undamaged item, and "Used" refers to an item that has been used previously. Top Rated Plus Sellers with highest buyer ratings Returns, money back Sellers with highest buyer ratings Returns, money back' model-index: - name: SentenceTransformer based on microsoft/deberta-v3-base results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test type: sts-test metrics: - type: pearson_cosine value: 0.8253431554642914 name: Pearson Cosine - type: spearman_cosine value: 0.870857890879963 name: Spearman Cosine - type: pearson_manhattan value: 0.8653068915625914 name: Pearson Manhattan - type: spearman_manhattan value: 0.8667110599943904 name: Spearman Manhattan - type: pearson_euclidean value: 0.8671346646296434 name: Pearson Euclidean - type: spearman_euclidean value: 0.8681442638917114 name: Spearman Euclidean - type: pearson_dot value: 0.7826717704847901 name: Pearson Dot - type: spearman_dot value: 0.7685403521338614 name: Spearman Dot - type: pearson_max value: 0.8671346646296434 name: Pearson Max - type: spearman_max value: 0.870857890879963 name: Spearman Max - task: type: binary-classification name: Binary Classification dataset: name: allNLI dev type: allNLI-dev metrics: - type: cosine_accuracy value: 0.71875 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.8745474815368652 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.617169373549884 name: Cosine F1 - type: cosine_f1_threshold value: 0.7519949674606323 name: Cosine F1 Threshold - type: cosine_precision value: 0.5155038759689923 name: Cosine Precision - type: cosine_recall value: 0.7687861271676301 name: Cosine Recall - type: cosine_ap value: 0.6116004689391709 name: Cosine Ap - type: dot_accuracy value: 0.693359375 name: Dot Accuracy - type: dot_accuracy_threshold value: 401.3755187988281 name: Dot Accuracy Threshold - type: dot_f1 value: 0.566735112936345 name: Dot F1 - type: dot_f1_threshold value: 295.2575988769531 name: Dot F1 Threshold - type: dot_precision value: 0.4394904458598726 name: Dot Precision - type: dot_recall value: 0.7976878612716763 name: Dot Recall - type: dot_ap value: 0.5243551756921989 name: Dot Ap - type: manhattan_accuracy value: 0.724609375 name: Manhattan Accuracy - type: manhattan_accuracy_threshold value: 228.3092498779297 name: Manhattan Accuracy Threshold - type: manhattan_f1 value: 0.6267281105990783 name: Manhattan F1 - type: manhattan_f1_threshold value: 266.0207824707031 name: Manhattan F1 Threshold - type: manhattan_precision value: 0.5210727969348659 name: Manhattan Precision - type: manhattan_recall value: 0.7861271676300579 name: Manhattan Recall - type: manhattan_ap value: 0.6101425904568746 name: Manhattan Ap - type: euclidean_accuracy value: 0.720703125 name: Euclidean Accuracy - type: euclidean_accuracy_threshold value: 9.726119041442871 name: Euclidean Accuracy Threshold - type: euclidean_f1 value: 0.6303854875283447 name: Euclidean F1 - type: euclidean_f1_threshold value: 14.837699890136719 name: Euclidean F1 Threshold - type: euclidean_precision value: 0.5186567164179104 name: Euclidean Precision - type: euclidean_recall value: 0.8034682080924855 name: Euclidean Recall - type: euclidean_ap value: 0.6172110045723997 name: Euclidean Ap - type: max_accuracy value: 0.724609375 name: Max Accuracy - type: max_accuracy_threshold value: 401.3755187988281 name: Max Accuracy Threshold - type: max_f1 value: 0.6303854875283447 name: Max F1 - type: max_f1_threshold value: 295.2575988769531 name: Max F1 Threshold - type: max_precision value: 0.5210727969348659 name: Max Precision - type: max_recall value: 0.8034682080924855 name: Max Recall - type: max_ap value: 0.6172110045723997 name: Max Ap - task: type: binary-classification name: Binary Classification dataset: name: Qnli dev type: Qnli-dev metrics: - type: cosine_accuracy value: 0.673828125 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.7472400069236755 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.6863468634686347 name: Cosine F1 - type: cosine_f1_threshold value: 0.7334084510803223 name: Cosine F1 Threshold - type: cosine_precision value: 0.6078431372549019 name: Cosine Precision - type: cosine_recall value: 0.788135593220339 name: Cosine Recall - type: cosine_ap value: 0.7293502303398447 name: Cosine Ap - type: dot_accuracy value: 0.6484375 name: Dot Accuracy - type: dot_accuracy_threshold value: 392.88726806640625 name: Dot Accuracy Threshold - type: dot_f1 value: 0.6634920634920635 name: Dot F1 - type: dot_f1_threshold value: 310.97833251953125 name: Dot F1 Threshold - type: dot_precision value: 0.5304568527918782 name: Dot Precision - type: dot_recall value: 0.885593220338983 name: Dot Recall - type: dot_ap value: 0.6331200610041253 name: Dot Ap - type: manhattan_accuracy value: 0.671875 name: Manhattan Accuracy - type: manhattan_accuracy_threshold value: 277.69342041015625 name: Manhattan Accuracy Threshold - type: manhattan_f1 value: 0.6830122591943958 name: Manhattan F1 - type: manhattan_f1_threshold value: 301.36639404296875 name: Manhattan F1 Threshold - type: manhattan_precision value: 0.582089552238806 name: Manhattan Precision - type: manhattan_recall value: 0.826271186440678 name: Manhattan Recall - type: manhattan_ap value: 0.7276384343706648 name: Manhattan Ap - type: euclidean_accuracy value: 0.68359375 name: Euclidean Accuracy - type: euclidean_accuracy_threshold value: 15.343950271606445 name: Euclidean Accuracy Threshold - type: euclidean_f1 value: 0.6895238095238095 name: Euclidean F1 - type: euclidean_f1_threshold value: 15.738676071166992 name: Euclidean F1 Threshold - type: euclidean_precision value: 0.6262975778546713 name: Euclidean Precision - type: euclidean_recall value: 0.7669491525423728 name: Euclidean Recall - type: euclidean_ap value: 0.7307379367367225 name: Euclidean Ap - type: max_accuracy value: 0.68359375 name: Max Accuracy - type: max_accuracy_threshold value: 392.88726806640625 name: Max Accuracy Threshold - type: max_f1 value: 0.6895238095238095 name: Max F1 - type: max_f1_threshold value: 310.97833251953125 name: Max F1 Threshold - type: max_precision value: 0.6262975778546713 name: Max Precision - type: max_recall value: 0.885593220338983 name: Max Recall - type: max_ap value: 0.7307379367367225 name: Max Ap --- # SentenceTransformer based on microsoft/deberta-v3-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the negation-triplets, [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), xsum-pairs, [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), openbookqa_pairs, [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq), [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) and global_dataset datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Datasets:** - negation-triplets - [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) - [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) - [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) - xsum-pairs - [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) - [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) - openbookqa_pairs - [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) - [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) - [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) - [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) - [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) - global_dataset - **Language:** en ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-test` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8253 | | **spearman_cosine** | **0.8709** | | pearson_manhattan | 0.8653 | | spearman_manhattan | 0.8667 | | pearson_euclidean | 0.8671 | | spearman_euclidean | 0.8681 | | pearson_dot | 0.7827 | | spearman_dot | 0.7685 | | pearson_max | 0.8671 | | spearman_max | 0.8709 | ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 96 - `per_device_eval_batch_size`: 68 - `learning_rate`: 3.5e-05 - `weight_decay`: 0.0005 - `num_train_epochs`: 2 - `lr_scheduler_type`: cosine_with_min_lr - `lr_scheduler_kwargs`: {'num_cycles': 3.5, 'min_lr': 1.5e-05} - `warmup_ratio`: 0.33 - `save_safetensors`: False - `fp16`: True - `push_to_hub`: True - `hub_model_id`: bobox/DeBERTa3-base-STr-CosineWaves-checkpoints-tmp - `hub_strategy`: all_checkpoints - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 96 - `per_device_eval_batch_size`: 68 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 3.5e-05 - `weight_decay`: 0.0005 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: cosine_with_min_lr - `lr_scheduler_kwargs`: {'num_cycles': 3.5, 'min_lr': 1.5e-05} - `warmup_ratio`: 0.33 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: False - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: True - `resume_from_checkpoint`: None - `hub_model_id`: bobox/DeBERTa3-base-STr-CosineWaves-checkpoints-tmp - `hub_strategy`: all_checkpoints - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.0.1 - Transformers: 4.44.0 - PyTorch: 2.4.0 - Accelerate: 0.33.0 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```