bobox commited on
Commit
04dc468
1 Parent(s): ef1421d

batch_size = 64

Browse files

num_epochs = 2
learning_rate = 5e-5
warmup_ratio=0.5

AdaptiveLayer: default arg

1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,697 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:314315
11
+ - loss:AdaptiveLayerLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: microsoft/deberta-v3-small
14
+ datasets:
15
+ - stanfordnlp/snli
16
+ - sentence-transformers/stsb
17
+ metrics:
18
+ - pearson_cosine
19
+ - spearman_cosine
20
+ - pearson_manhattan
21
+ - spearman_manhattan
22
+ - pearson_euclidean
23
+ - spearman_euclidean
24
+ - pearson_dot
25
+ - spearman_dot
26
+ - pearson_max
27
+ - spearman_max
28
+ - cosine_accuracy
29
+ - cosine_accuracy_threshold
30
+ - cosine_f1
31
+ - cosine_f1_threshold
32
+ - cosine_precision
33
+ - cosine_recall
34
+ - cosine_ap
35
+ - dot_accuracy
36
+ - dot_accuracy_threshold
37
+ - dot_f1
38
+ - dot_f1_threshold
39
+ - dot_precision
40
+ - dot_recall
41
+ - dot_ap
42
+ - manhattan_accuracy
43
+ - manhattan_accuracy_threshold
44
+ - manhattan_f1
45
+ - manhattan_f1_threshold
46
+ - manhattan_precision
47
+ - manhattan_recall
48
+ - manhattan_ap
49
+ - euclidean_accuracy
50
+ - euclidean_accuracy_threshold
51
+ - euclidean_f1
52
+ - euclidean_f1_threshold
53
+ - euclidean_precision
54
+ - euclidean_recall
55
+ - euclidean_ap
56
+ - max_accuracy
57
+ - max_accuracy_threshold
58
+ - max_f1
59
+ - max_f1_threshold
60
+ - max_precision
61
+ - max_recall
62
+ - max_ap
63
+ widget:
64
+ - source_sentence: Two teenage girls conversing next to lockers.
65
+ sentences:
66
+ - Girls talking about their problems next to lockers.
67
+ - A bully tries to pop a balloon without being caught in the act.
68
+ - Two dogs standing together in the yard.
69
+ - source_sentence: A young man in a heavy brown winter coat stands in front of a blue
70
+ railing with his arms spread.
71
+ sentences:
72
+ - a boy holding onto the wall of an old brick house's raised foundation as construction
73
+ occurs
74
+ - The railing is in front of a frozen lake.
75
+ - A skateboarder is doing tricks for a competition.
76
+ - source_sentence: A shirtless man with a white hat and no shoes sitting crisscross
77
+ with his back against the wall holding up a white plastic cup.
78
+ sentences:
79
+ - A long-haired boy riding his skateboard at a fast pace over a stone wall with
80
+ graffiti.
81
+ - A man is sitting crisscross
82
+ - a child in a black ninja suit does a kick
83
+ - source_sentence: A light colored dog leaps over a hurdle.
84
+ sentences:
85
+ - Men sit on the bus going to work,
86
+ - A dog jumps over a obstacel.
87
+ - a man standing on his motorbike.
88
+ - source_sentence: people are standing near water with a boat heading their direction
89
+ sentences:
90
+ - People are standing near water with a large blue boat heading their direction.
91
+ - Two people climbing on a wooden scaffold.
92
+ - The dogs are near the toy.
93
+ pipeline_tag: sentence-similarity
94
+ model-index:
95
+ - name: SentenceTransformer based on microsoft/deberta-v3-small
96
+ results:
97
+ - task:
98
+ type: semantic-similarity
99
+ name: Semantic Similarity
100
+ dataset:
101
+ name: Unknown
102
+ type: unknown
103
+ metrics:
104
+ - type: pearson_cosine
105
+ value: 0.7660217567682521
106
+ name: Pearson Cosine
107
+ - type: spearman_cosine
108
+ value: 0.7681125489633884
109
+ name: Spearman Cosine
110
+ - type: pearson_manhattan
111
+ value: 0.7917532885619117
112
+ name: Pearson Manhattan
113
+ - type: spearman_manhattan
114
+ value: 0.794675885405013
115
+ name: Spearman Manhattan
116
+ - type: pearson_euclidean
117
+ value: 0.7860948725725584
118
+ name: Pearson Euclidean
119
+ - type: spearman_euclidean
120
+ value: 0.7895594746178918
121
+ name: Spearman Euclidean
122
+ - type: pearson_dot
123
+ value: 0.644843928972524
124
+ name: Pearson Dot
125
+ - type: spearman_dot
126
+ value: 0.6427588138459626
127
+ name: Spearman Dot
128
+ - type: pearson_max
129
+ value: 0.7917532885619117
130
+ name: Pearson Max
131
+ - type: spearman_max
132
+ value: 0.794675885405013
133
+ name: Spearman Max
134
+ - task:
135
+ type: binary-classification
136
+ name: Binary Classification
137
+ dataset:
138
+ name: Unknown
139
+ type: unknown
140
+ metrics:
141
+ - type: cosine_accuracy
142
+ value: 0.6730608840700584
143
+ name: Cosine Accuracy
144
+ - type: cosine_accuracy_threshold
145
+ value: 0.5814725160598755
146
+ name: Cosine Accuracy Threshold
147
+ - type: cosine_f1
148
+ value: 0.7170495061078964
149
+ name: Cosine F1
150
+ - type: cosine_f1_threshold
151
+ value: 0.4670722782611847
152
+ name: Cosine F1 Threshold
153
+ - type: cosine_precision
154
+ value: 0.5977392321184954
155
+ name: Cosine Precision
156
+ - type: cosine_recall
157
+ value: 0.895866802979407
158
+ name: Cosine Recall
159
+ - type: cosine_ap
160
+ value: 0.7193483203625508
161
+ name: Cosine Ap
162
+ - type: dot_accuracy
163
+ value: 0.6444764576541057
164
+ name: Dot Accuracy
165
+ - type: dot_accuracy_threshold
166
+ value: 71.95508575439453
167
+ name: Dot Accuracy Threshold
168
+ - type: dot_f1
169
+ value: 0.7094262988661364
170
+ name: Dot F1
171
+ - type: dot_f1_threshold
172
+ value: 53.77289581298828
173
+ name: Dot F1 Threshold
174
+ - type: dot_precision
175
+ value: 0.5779411764705882
176
+ name: Dot Precision
177
+ - type: dot_recall
178
+ value: 0.9183584051409376
179
+ name: Dot Recall
180
+ - type: dot_ap
181
+ value: 0.6828334101602328
182
+ name: Dot Ap
183
+ - type: manhattan_accuracy
184
+ value: 0.6664644779740693
185
+ name: Manhattan Accuracy
186
+ - type: manhattan_accuracy_threshold
187
+ value: 213.6251678466797
188
+ name: Manhattan Accuracy Threshold
189
+ - type: manhattan_f1
190
+ value: 0.7047102517243412
191
+ name: Manhattan F1
192
+ - type: manhattan_f1_threshold
193
+ value: 245.20578002929688
194
+ name: Manhattan F1 Threshold
195
+ - type: manhattan_precision
196
+ value: 0.5908461842625544
197
+ name: Manhattan Precision
198
+ - type: manhattan_recall
199
+ value: 0.8729370527238206
200
+ name: Manhattan Recall
201
+ - type: manhattan_ap
202
+ value: 0.7132026586783923
203
+ name: Manhattan Ap
204
+ - type: euclidean_accuracy
205
+ value: 0.6621426946698006
206
+ name: Euclidean Accuracy
207
+ - type: euclidean_accuracy_threshold
208
+ value: 10.358880996704102
209
+ name: Euclidean Accuracy Threshold
210
+ - type: euclidean_f1
211
+ value: 0.7024081560907013
212
+ name: Euclidean F1
213
+ - type: euclidean_f1_threshold
214
+ value: 12.010871887207031
215
+ name: Euclidean F1 Threshold
216
+ - type: euclidean_precision
217
+ value: 0.5864970645792563
218
+ name: Euclidean Precision
219
+ - type: euclidean_recall
220
+ value: 0.8754198919234701
221
+ name: Euclidean Recall
222
+ - type: euclidean_ap
223
+ value: 0.7101786172295015
224
+ name: Euclidean Ap
225
+ - type: max_accuracy
226
+ value: 0.6730608840700584
227
+ name: Max Accuracy
228
+ - type: max_accuracy_threshold
229
+ value: 213.6251678466797
230
+ name: Max Accuracy Threshold
231
+ - type: max_f1
232
+ value: 0.7170495061078964
233
+ name: Max F1
234
+ - type: max_f1_threshold
235
+ value: 245.20578002929688
236
+ name: Max F1 Threshold
237
+ - type: max_precision
238
+ value: 0.5977392321184954
239
+ name: Max Precision
240
+ - type: max_recall
241
+ value: 0.9183584051409376
242
+ name: Max Recall
243
+ - type: max_ap
244
+ value: 0.7193483203625508
245
+ name: Max Ap
246
+ ---
247
+
248
+ # SentenceTransformer based on microsoft/deberta-v3-small
249
+
250
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
251
+
252
+ ## Model Details
253
+
254
+ ### Model Description
255
+ - **Model Type:** Sentence Transformer
256
+ - **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
257
+ - **Maximum Sequence Length:** 512 tokens
258
+ - **Output Dimensionality:** 768 tokens
259
+ - **Similarity Function:** Cosine Similarity
260
+ - **Training Dataset:**
261
+ - [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli)
262
+ - **Language:** en
263
+ <!-- - **License:** Unknown -->
264
+
265
+ ### Model Sources
266
+
267
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
268
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
269
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
270
+
271
+ ### Full Model Architecture
272
+
273
+ ```
274
+ SentenceTransformer(
275
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
276
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
277
+ )
278
+ ```
279
+
280
+ ## Usage
281
+
282
+ ### Direct Usage (Sentence Transformers)
283
+
284
+ First install the Sentence Transformers library:
285
+
286
+ ```bash
287
+ pip install -U sentence-transformers
288
+ ```
289
+
290
+ Then you can load this model and run inference.
291
+ ```python
292
+ from sentence_transformers import SentenceTransformer
293
+
294
+ # Download from the 🤗 Hub
295
+ model = SentenceTransformer("bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerBaseline")
296
+ # Run inference
297
+ sentences = [
298
+ 'people are standing near water with a boat heading their direction',
299
+ 'People are standing near water with a large blue boat heading their direction.',
300
+ 'The dogs are near the toy.',
301
+ ]
302
+ embeddings = model.encode(sentences)
303
+ print(embeddings.shape)
304
+ # [3, 768]
305
+
306
+ # Get the similarity scores for the embeddings
307
+ similarities = model.similarity(embeddings, embeddings)
308
+ print(similarities.shape)
309
+ # [3, 3]
310
+ ```
311
+
312
+ <!--
313
+ ### Direct Usage (Transformers)
314
+
315
+ <details><summary>Click to see the direct usage in Transformers</summary>
316
+
317
+ </details>
318
+ -->
319
+
320
+ <!--
321
+ ### Downstream Usage (Sentence Transformers)
322
+
323
+ You can finetune this model on your own dataset.
324
+
325
+ <details><summary>Click to expand</summary>
326
+
327
+ </details>
328
+ -->
329
+
330
+ <!--
331
+ ### Out-of-Scope Use
332
+
333
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
334
+ -->
335
+
336
+ ## Evaluation
337
+
338
+ ### Metrics
339
+
340
+ #### Semantic Similarity
341
+
342
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
343
+
344
+ | Metric | Value |
345
+ |:--------------------|:-----------|
346
+ | pearson_cosine | 0.766 |
347
+ | **spearman_cosine** | **0.7681** |
348
+ | pearson_manhattan | 0.7918 |
349
+ | spearman_manhattan | 0.7947 |
350
+ | pearson_euclidean | 0.7861 |
351
+ | spearman_euclidean | 0.7896 |
352
+ | pearson_dot | 0.6448 |
353
+ | spearman_dot | 0.6428 |
354
+ | pearson_max | 0.7918 |
355
+ | spearman_max | 0.7947 |
356
+
357
+ #### Binary Classification
358
+
359
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
360
+
361
+ | Metric | Value |
362
+ |:-----------------------------|:-----------|
363
+ | cosine_accuracy | 0.6731 |
364
+ | cosine_accuracy_threshold | 0.5815 |
365
+ | cosine_f1 | 0.717 |
366
+ | cosine_f1_threshold | 0.4671 |
367
+ | cosine_precision | 0.5977 |
368
+ | cosine_recall | 0.8959 |
369
+ | cosine_ap | 0.7193 |
370
+ | dot_accuracy | 0.6445 |
371
+ | dot_accuracy_threshold | 71.9551 |
372
+ | dot_f1 | 0.7094 |
373
+ | dot_f1_threshold | 53.7729 |
374
+ | dot_precision | 0.5779 |
375
+ | dot_recall | 0.9184 |
376
+ | dot_ap | 0.6828 |
377
+ | manhattan_accuracy | 0.6665 |
378
+ | manhattan_accuracy_threshold | 213.6252 |
379
+ | manhattan_f1 | 0.7047 |
380
+ | manhattan_f1_threshold | 245.2058 |
381
+ | manhattan_precision | 0.5908 |
382
+ | manhattan_recall | 0.8729 |
383
+ | manhattan_ap | 0.7132 |
384
+ | euclidean_accuracy | 0.6621 |
385
+ | euclidean_accuracy_threshold | 10.3589 |
386
+ | euclidean_f1 | 0.7024 |
387
+ | euclidean_f1_threshold | 12.0109 |
388
+ | euclidean_precision | 0.5865 |
389
+ | euclidean_recall | 0.8754 |
390
+ | euclidean_ap | 0.7102 |
391
+ | max_accuracy | 0.6731 |
392
+ | max_accuracy_threshold | 213.6252 |
393
+ | max_f1 | 0.717 |
394
+ | max_f1_threshold | 245.2058 |
395
+ | max_precision | 0.5977 |
396
+ | max_recall | 0.9184 |
397
+ | **max_ap** | **0.7193** |
398
+
399
+ <!--
400
+ ## Bias, Risks and Limitations
401
+
402
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
403
+ -->
404
+
405
+ <!--
406
+ ### Recommendations
407
+
408
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
409
+ -->
410
+
411
+ ## Training Details
412
+
413
+ ### Training Dataset
414
+
415
+ #### stanfordnlp/snli
416
+
417
+ * Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
418
+ * Size: 314,315 training samples
419
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
420
+ * Approximate statistics based on the first 1000 samples:
421
+ | | sentence1 | sentence2 | label |
422
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
423
+ | type | string | string | int |
424
+ | details | <ul><li>min: 5 tokens</li><li>mean: 16.62 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.46 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
425
+ * Samples:
426
+ | sentence1 | sentence2 | label |
427
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:---------------|
428
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> |
429
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>0</code> |
430
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>0</code> |
431
+ * Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
432
+ ```json
433
+ {
434
+ "loss": "MultipleNegativesRankingLoss",
435
+ "n_layers_per_step": 1,
436
+ "last_layer_weight": 1,
437
+ "prior_layers_weight": 1,
438
+ "kl_div_weight": 1.2,
439
+ "kl_temperature": 1.2
440
+ }
441
+ ```
442
+
443
+ ### Evaluation Dataset
444
+
445
+ #### sentence-transformers/stsb
446
+
447
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
448
+ * Size: 1,500 evaluation samples
449
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
450
+ * Approximate statistics based on the first 1000 samples:
451
+ | | sentence1 | sentence2 | score |
452
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
453
+ | type | string | string | float |
454
+ | details | <ul><li>min: 5 tokens</li><li>mean: 14.77 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.74 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
455
+ * Samples:
456
+ | sentence1 | sentence2 | score |
457
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
458
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
459
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
460
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
461
+ * Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
462
+ ```json
463
+ {
464
+ "loss": "MultipleNegativesRankingLoss",
465
+ "n_layers_per_step": 1,
466
+ "last_layer_weight": 1,
467
+ "prior_layers_weight": 1,
468
+ "kl_div_weight": 1.2,
469
+ "kl_temperature": 1.2
470
+ }
471
+ ```
472
+
473
+ ### Training Hyperparameters
474
+ #### Non-Default Hyperparameters
475
+
476
+ - `eval_strategy`: steps
477
+ - `per_device_train_batch_size`: 32
478
+ - `per_device_eval_batch_size`: 16
479
+ - `learning_rate`: 5e-06
480
+ - `weight_decay`: 1e-07
481
+ - `num_train_epochs`: 2
482
+ - `warmup_ratio`: 0.5
483
+ - `save_safetensors`: False
484
+ - `fp16`: True
485
+ - `push_to_hub`: True
486
+ - `hub_model_id`: bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerBaselinen
487
+ - `hub_strategy`: checkpoint
488
+ - `batch_sampler`: no_duplicates
489
+
490
+ #### All Hyperparameters
491
+ <details><summary>Click to expand</summary>
492
+
493
+ - `overwrite_output_dir`: False
494
+ - `do_predict`: False
495
+ - `eval_strategy`: steps
496
+ - `prediction_loss_only`: True
497
+ - `per_device_train_batch_size`: 32
498
+ - `per_device_eval_batch_size`: 16
499
+ - `per_gpu_train_batch_size`: None
500
+ - `per_gpu_eval_batch_size`: None
501
+ - `gradient_accumulation_steps`: 1
502
+ - `eval_accumulation_steps`: None
503
+ - `learning_rate`: 5e-06
504
+ - `weight_decay`: 1e-07
505
+ - `adam_beta1`: 0.9
506
+ - `adam_beta2`: 0.999
507
+ - `adam_epsilon`: 1e-08
508
+ - `max_grad_norm`: 1.0
509
+ - `num_train_epochs`: 2
510
+ - `max_steps`: -1
511
+ - `lr_scheduler_type`: linear
512
+ - `lr_scheduler_kwargs`: {}
513
+ - `warmup_ratio`: 0.5
514
+ - `warmup_steps`: 0
515
+ - `log_level`: passive
516
+ - `log_level_replica`: warning
517
+ - `log_on_each_node`: True
518
+ - `logging_nan_inf_filter`: True
519
+ - `save_safetensors`: False
520
+ - `save_on_each_node`: False
521
+ - `save_only_model`: False
522
+ - `restore_callback_states_from_checkpoint`: False
523
+ - `no_cuda`: False
524
+ - `use_cpu`: False
525
+ - `use_mps_device`: False
526
+ - `seed`: 42
527
+ - `data_seed`: None
528
+ - `jit_mode_eval`: False
529
+ - `use_ipex`: False
530
+ - `bf16`: False
531
+ - `fp16`: True
532
+ - `fp16_opt_level`: O1
533
+ - `half_precision_backend`: auto
534
+ - `bf16_full_eval`: False
535
+ - `fp16_full_eval`: False
536
+ - `tf32`: None
537
+ - `local_rank`: 0
538
+ - `ddp_backend`: None
539
+ - `tpu_num_cores`: None
540
+ - `tpu_metrics_debug`: False
541
+ - `debug`: []
542
+ - `dataloader_drop_last`: False
543
+ - `dataloader_num_workers`: 0
544
+ - `dataloader_prefetch_factor`: None
545
+ - `past_index`: -1
546
+ - `disable_tqdm`: False
547
+ - `remove_unused_columns`: True
548
+ - `label_names`: None
549
+ - `load_best_model_at_end`: False
550
+ - `ignore_data_skip`: False
551
+ - `fsdp`: []
552
+ - `fsdp_min_num_params`: 0
553
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
554
+ - `fsdp_transformer_layer_cls_to_wrap`: None
555
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
556
+ - `deepspeed`: None
557
+ - `label_smoothing_factor`: 0.0
558
+ - `optim`: adamw_torch
559
+ - `optim_args`: None
560
+ - `adafactor`: False
561
+ - `group_by_length`: False
562
+ - `length_column_name`: length
563
+ - `ddp_find_unused_parameters`: None
564
+ - `ddp_bucket_cap_mb`: None
565
+ - `ddp_broadcast_buffers`: False
566
+ - `dataloader_pin_memory`: True
567
+ - `dataloader_persistent_workers`: False
568
+ - `skip_memory_metrics`: True
569
+ - `use_legacy_prediction_loop`: False
570
+ - `push_to_hub`: True
571
+ - `resume_from_checkpoint`: None
572
+ - `hub_model_id`: bobox/DeBERTaV3-small-SentenceTransformer-AdaptiveLayerBaselinen
573
+ - `hub_strategy`: checkpoint
574
+ - `hub_private_repo`: False
575
+ - `hub_always_push`: False
576
+ - `gradient_checkpointing`: False
577
+ - `gradient_checkpointing_kwargs`: None
578
+ - `include_inputs_for_metrics`: False
579
+ - `eval_do_concat_batches`: True
580
+ - `fp16_backend`: auto
581
+ - `push_to_hub_model_id`: None
582
+ - `push_to_hub_organization`: None
583
+ - `mp_parameters`:
584
+ - `auto_find_batch_size`: False
585
+ - `full_determinism`: False
586
+ - `torchdynamo`: None
587
+ - `ray_scope`: last
588
+ - `ddp_timeout`: 1800
589
+ - `torch_compile`: False
590
+ - `torch_compile_backend`: None
591
+ - `torch_compile_mode`: None
592
+ - `dispatch_batches`: None
593
+ - `split_batches`: None
594
+ - `include_tokens_per_second`: False
595
+ - `include_num_input_tokens_seen`: False
596
+ - `neftune_noise_alpha`: None
597
+ - `optim_target_modules`: None
598
+ - `batch_eval_metrics`: False
599
+ - `batch_sampler`: no_duplicates
600
+ - `multi_dataset_batch_sampler`: proportional
601
+
602
+ </details>
603
+
604
+ ### Training Logs
605
+ | Epoch | Step | Training Loss | loss | max_ap | spearman_cosine |
606
+ |:------:|:-----:|:-------------:|:------:|:------:|:---------------:|
607
+ | None | 0 | - | 4.1425 | - | 0.4276 |
608
+ | 0.1001 | 983 | 4.7699 | 3.8387 | 0.6364 | - |
609
+ | 0.2001 | 1966 | 3.5997 | 2.7649 | 0.6722 | - |
610
+ | 0.3002 | 2949 | 2.811 | 2.3520 | 0.6838 | - |
611
+ | 0.4003 | 3932 | 2.414 | 2.0700 | 0.6883 | - |
612
+ | 0.5004 | 4915 | 2.186 | 1.8993 | 0.6913 | - |
613
+ | 0.6004 | 5898 | 1.8523 | 1.5632 | 0.7045 | - |
614
+ | 0.7005 | 6881 | 0.6415 | 1.4902 | 0.7082 | - |
615
+ | 0.8006 | 7864 | 0.5016 | 1.4636 | 0.7108 | - |
616
+ | 0.9006 | 8847 | 0.4194 | 1.3875 | 0.7121 | - |
617
+ | 1.0007 | 9830 | 0.3737 | 1.3077 | 0.7117 | - |
618
+ | 1.1008 | 10813 | 1.8087 | 1.0903 | 0.7172 | - |
619
+ | 1.2009 | 11796 | 1.6631 | 1.0388 | 0.7180 | - |
620
+ | 1.3009 | 12779 | 1.6161 | 1.0177 | 0.7169 | - |
621
+ | 1.4010 | 13762 | 1.5378 | 1.0136 | 0.7148 | - |
622
+ | 1.5011 | 14745 | 1.5215 | 1.0053 | 0.7159 | - |
623
+ | 1.6011 | 15728 | 1.2887 | 0.9600 | 0.7166 | - |
624
+ | 1.7012 | 16711 | 0.3058 | 0.9949 | 0.7180 | - |
625
+ | 1.8013 | 17694 | 0.2897 | 0.9792 | 0.7186 | - |
626
+ | 1.9014 | 18677 | 0.275 | 0.9598 | 0.7192 | - |
627
+ | 2.0 | 19646 | - | 0.9796 | 0.7193 | - |
628
+ | None | 0 | - | 2.4594 | 0.7193 | 0.7681 |
629
+
630
+
631
+ ### Framework Versions
632
+ - Python: 3.10.13
633
+ - Sentence Transformers: 3.0.1
634
+ - Transformers: 4.41.2
635
+ - PyTorch: 2.1.2
636
+ - Accelerate: 0.30.1
637
+ - Datasets: 2.19.2
638
+ - Tokenizers: 0.19.1
639
+
640
+ ## Citation
641
+
642
+ ### BibTeX
643
+
644
+ #### Sentence Transformers
645
+ ```bibtex
646
+ @inproceedings{reimers-2019-sentence-bert,
647
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
648
+ author = "Reimers, Nils and Gurevych, Iryna",
649
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
650
+ month = "11",
651
+ year = "2019",
652
+ publisher = "Association for Computational Linguistics",
653
+ url = "https://arxiv.org/abs/1908.10084",
654
+ }
655
+ ```
656
+
657
+ #### AdaptiveLayerLoss
658
+ ```bibtex
659
+ @misc{li20242d,
660
+ title={2D Matryoshka Sentence Embeddings},
661
+ author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
662
+ year={2024},
663
+ eprint={2402.14776},
664
+ archivePrefix={arXiv},
665
+ primaryClass={cs.CL}
666
+ }
667
+ ```
668
+
669
+ #### MultipleNegativesRankingLoss
670
+ ```bibtex
671
+ @misc{henderson2017efficient,
672
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
673
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
674
+ year={2017},
675
+ eprint={1705.00652},
676
+ archivePrefix={arXiv},
677
+ primaryClass={cs.CL}
678
+ }
679
+ ```
680
+
681
+ <!--
682
+ ## Glossary
683
+
684
+ *Clearly define terms in order to be accessible across audiences.*
685
+ -->
686
+
687
+ <!--
688
+ ## Model Card Authors
689
+
690
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
691
+ -->
692
+
693
+ <!--
694
+ ## Model Card Contact
695
+
696
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
697
+ -->
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 128000
3
+ }
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/deberta-v3-small",
3
+ "architectures": [
4
+ "DebertaV2Model"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-07,
13
+ "max_position_embeddings": 512,
14
+ "max_relative_positions": -1,
15
+ "model_type": "deberta-v2",
16
+ "norm_rel_ebd": "layer_norm",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "pooler_dropout": 0,
21
+ "pooler_hidden_act": "gelu",
22
+ "pooler_hidden_size": 768,
23
+ "pos_att_type": [
24
+ "p2c",
25
+ "c2p"
26
+ ],
27
+ "position_biased_input": false,
28
+ "position_buckets": 256,
29
+ "relative_attention": true,
30
+ "share_att_key": true,
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.41.2",
33
+ "type_vocab_size": 0,
34
+ "vocab_size": 128100
35
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fa4f021b3c8180293c35ac5851bd9eeaaa279012fe8ea4b9ac5b2ed196aa064
3
+ size 565251810
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": {
9
+ "content": "[UNK]",
10
+ "lstrip": false,
11
+ "normalized": true,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ }
15
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128000": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": false,
48
+ "eos_token": "[SEP]",
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "sp_model_kwargs": {},
54
+ "split_by_punct": false,
55
+ "tokenizer_class": "DebertaV2Tokenizer",
56
+ "unk_token": "[UNK]",
57
+ "vocab_type": "spm"
58
+ }