File size: 4,100 Bytes
6e1a7c6 6721a6f 6e1a7c6 9af87e8 6721a6f 6e1a7c6 1b3874c 6721a6f 4f6a589 6721a6f f6042fc 6e1a7c6 1b3874c 6e1a7c6 fe8883a 6dbf4c2 fe8883a 6dbf4c2 fe8883a bb99554 1b3874c bb99554 1b3874c bb99554 1b3874c bb99554 1b3874c bb99554 1b3874c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
language:
- fr
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_9_0
- generated_from_trainer
- hf-asr-leaderboard
- robust-speech-event
datasets:
- common_voice
- mozilla-foundation/common_voice_9_0
model-index:
- name: Fine-tuned Wav2Vec2 XLS-R 1B model for ASR in French
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 9
type: mozilla-foundation/common_voice_9_0
args: fr
metrics:
- name: Test WER
type: wer
value: 12.72
- name: Test CER
type: cer
value: 3.78
- name: Test WER (+LM)
type: wer
value: 10.60
- name: Test CER (+LM)
type: cer
value: 3.41
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: fr
metrics:
- name: Test WER
type: wer
value: 24.28
- name: Test CER
type: cer
value: 11.46
- name: Test WER (+LM)
type: wer
value: 20.85
- name: Test CER (+LM)
type: cer
value: 11.09
---
# Fine-tuned Wav2Vec2 XLS-R 1B model for ASR in French
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_9_0 - FR dataset.
## Usage
1. To use on a local audio file without the language model
```python
import torch
import torchaudio
from transformers import AutoModelForCTC, Wav2Vec2Processor
processor = Wav2Vec2Processor.from_pretrained("bhuang/wav2vec2-xls-r-1b-cv9-fr")
model = AutoModelForCTC.from_pretrained("bhuang/wav2vec2-xls-r-1b-cv9-fr").cuda()
# path to your audio file
wav_path = "example.wav"
waveform, sample_rate = torchaudio.load(wav_path)
waveform = waveform.squeeze(axis=0) # mono
# resample
if sample_rate != 16_000:
resampler = torchaudio.transforms.Resample(sample_rate, 16_000)
waveform = resampler(waveform)
# normalize
input_dict = processor(waveform, sampling_rate=16_000, return_tensors="pt")
with torch.inference_mode():
logits = model(input_dict.input_values.to("cuda")).logits
# decode
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentence = processor.batch_decode(predicted_ids)[0]
```
2. To use on a local audio file with the language model
```python
import torch
import torchaudio
from transformers import AutoModelForCTC, Wav2Vec2ProcessorWithLM
processor_with_lm = Wav2Vec2ProcessorWithLM.from_pretrained("bhuang/wav2vec2-xls-r-1b-cv9-fr")
model = AutoModelForCTC.from_pretrained("bhuang/wav2vec2-xls-r-1b-cv9-fr").cuda()
model_sampling_rate = processor_with_lm.feature_extractor.sampling_rate
# path to your audio file
wav_path = "example.wav"
waveform, sample_rate = torchaudio.load(wav_path)
waveform = waveform.squeeze(axis=0) # mono
# resample
if sample_rate != 16_000:
resampler = torchaudio.transforms.Resample(sample_rate, 16_000)
waveform = resampler(waveform)
# normalize
input_dict = processor_with_lm(waveform, sampling_rate=16_000, return_tensors="pt")
with torch.inference_mode():
logits = model(input_dict.input_values.to("cuda")).logits
predicted_sentence = processor_with_lm.batch_decode(logits.cpu().numpy()).text[0]
```
## Evaluation
1. To evaluate on `mozilla-foundation/common_voice_9_0`
```bash
python eval.py \
--model_id "bhuang/wav2vec2-xls-r-1b-cv9-fr" \
--dataset "mozilla-foundation/common_voice_9_0" \
--config "fr" \
--split "test" \
--log_outputs \
--outdir "outputs/results_mozilla-foundatio_common_voice_9_0_with_lm"
```
2. To evaluate on `speech-recognition-community-v2/dev_data`
```bash
python eval.py \
--model_id "bhuang/wav2vec2-xls-r-1b-cv9-fr" \
--dataset "speech-recognition-community-v2/dev_data" \
--config "fr" \
--split "validation" \
--chunk_length_s 5.0 \
--stride_length_s 1.0 \
--log_outputs \
--outdir "outputs/results_speech-recognition-community-v2_dev_data_with_lm"
```
|